ROLL NO.

ALCCS - OLD SCHEME

Code: CS41
Subject: NUMERICAL \& SCIENTIFIC COMPUTING
Time: 3 Hours

NOTE:

AUGUST 2011

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.
Q. 1 a. Derive an expression for the minimum number of iterations required for converging to a root in the interval $[\mathrm{a}, \mathrm{b}]$ for a given degree of accuracy \in using bisection method.
b. Solve the following system of equations
$10 x_{1}-x_{2}+2 x_{3}=4$
$x_{1}+10 x_{2}-x_{3}=3$
$2 x_{1}+3 x_{2}+20 x_{3}=7$
using the Gauss elimination method.
c. Find a root of the equation $x^{2}+2 x-5=0$ by Newton-Raphson method using the initial point as $\mathrm{x}_{0}=1$.
d. Fit a straight line to the following data using principle of least squares:

x	$:$	1	2	3	4
$\mathrm{f}(\mathrm{x})$	$:$	-1	1	3	5

e. Find the unique polynomial of degree 2 or less such that $f(0)=1, f(1)=3$ and $f(3)$ $=55$ using the Newton divided difference Interpolation.
f. Evaluate $I=\int_{-\infty}^{\infty} \frac{e^{-x^{2}}}{x^{2}+x+1} d x$ using Gauss-Hermite 2-point formula.
g. The solution of a problem is given as 3.436, it is known that absolute error in the solution is less than 0.01 . Find the interval within which the exact value must lie.
Q. 2 a. Define order of convergence. How the constant α should be chosen to ensure the fastest possible convergence with the formula $\mathrm{x}_{\mathrm{n}+1}=\frac{\alpha \mathrm{x}_{\mathrm{n}}+\mathrm{x}_{\mathrm{n}}^{-2}+1}{\alpha+1}$
b. Perform five iterations of the bisection method to obtain the smallest positive root of the equation $f(x)=x^{3}-5 x+1=0$
Q. 3 a. Find the inverse of the matrix using the LU decomposition method.

$$
\mathrm{A}=\left[\begin{array}{lll}
3 & 2 & 1 \tag{10}\\
2 & 3 & 2 \\
1 & 2 & 2
\end{array}\right]
$$

b. The system of equations $A x=b$ is to be solved iteratively by $x_{n+1}=M x_{n}+b$.

Suppose $A=\left[\begin{array}{cc}1 & k \\ 2 k & 1\end{array}\right], k \neq \sqrt{2} / 2, k$ real
(i) Find a necessary and sufficient condition on k for convergence of the Jacobi method.
(ii) For $\mathrm{k}=0.25$ determine the optimal relaxation factor w , if the system is to be solved with relaxation method.
Q. 4 a. Find the largest eigen value in modulus and the corresponding eigen vector of the matrix

$$
A=\left[\begin{array}{ccc}
-15 & 4 & 3 \tag{8}\\
10 & -12 & 6 \\
20 & -4 & 2
\end{array}\right]
$$

using the power method.
b. Find all the eigenvalues of the matrix
$\mathrm{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1\end{array}\right]$
using the Jacobi method. Iterate till the off-diagonal elements, in magnitude, are less than 0.6.
Q. 5 a. For the following data, calculate the difference and obtain the forward and backward difference polynomials. Interpolate at $\mathrm{x}=0.25$.

$$
\begin{array}{lllllll}
\mathrm{x} & : & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 \tag{8}\\
\mathrm{y} & : & 1.40 & 1.56 & 1.76 & 2.00 & 2.28
\end{array}
$$

b. Using the Chebyshev polynomials, obtain the least squares approximation of second degree for $\mathrm{f}(\mathrm{x})=\mathrm{x}^{4}$ on $[-1,1]$.
Q. 6 a. Find the approximate value of

$$
\mathrm{I}=\int_{0}^{1} \frac{\mathrm{dx}}{1+\mathrm{x}}
$$

using Simpson's rule. Obtain the actual error and bound of the error.
b. Evaluate the integral $\mathrm{I}=\int_{1}^{2} \frac{2 \mathrm{xdx}}{\mathrm{x}^{4}+1}$ using the Gauss-Legendre 1-point, 2-point and

3-point quadrature rules.
Q. 7 a. Solve the following initial value problem,

$$
\begin{align*}
& \frac{\mathrm{du}}{\mathrm{dt}}=-2 \mathrm{t} \mathrm{u}^{2} \\
& \mathrm{u}(0)=1 \\
& \text { using Euler's method. }[\text { Given } \mathrm{h}=0.2 ; \text { interval }[0,1]] \tag{9}
\end{align*}
$$

b. Solve the system of equations
$u^{\prime}=-3 u+2 v, u(0)=0$
$\mathrm{v}^{\prime}=3 \mathrm{u}-4 \mathrm{v}, \mathrm{v}(0)=0.5$
With $\mathrm{h}=0.2$ on the interval $[0,0.4]$. Use the classical Runge-Kutta fourth order method.

