ROLL NO. ____

ALCCS - OLD SCHEME

Code: CS41 Time: 3 Hours Subject: NUMERICAL & SCIENTIFIC COMPUTING

Max. Marks: 100

AUGUST 2011

NOTE:

- Please write your Roll No. at the space provided on each page immediately after receiving the Question Paper.
- Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.
- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.
- Q.1 a. Derive an expression for the minimum number of iterations required for converging to a root in the interval [a, b] for a given degree of accuracy ∈ using bisection method.
 - b. Solve the following system of equations

 $10x_1 - x_2 + 2x_3 = 4$ $x_1 + 10x_2 - x_3 = 3$ $2x_1 + 3x_2 + 20x_3 = 7$ using the Gauss elimination method.

- c. Find a root of the equation $x^2 + 2x 5 = 0$ by Newton-Raphson method using the initial point as $x_0 = 1$.
- d. Fit a straight line to the following data using principle of least squares:

Х	:	1	2	3	4
f(x)	:	-1	1	3	5

e. Find the unique polynomial of degree 2 or less such that f(0) = 1, f(1) = 3 and f(3) = 55 using the Newton divided difference Interpolation.

f. Evaluate I = $\int_{-\infty}^{\infty} \frac{e^{-x^2}}{x^2 + x + 1} dx$ using Gauss-Hermite 2-point formula.

g. The solution of a problem is given as 3.436, it is known that absolute error in the solution is less than 0.01. Find the interval within which the exact value must lie.

 (7×4)

- **Q.2** a. Define order of convergence. How the constant α should be chosen to ensure the fastest possible convergence with the formula $x_{n+1} = \frac{\alpha x_n + x_n^{-2} + 1}{\alpha + 1}$ (9)
 - b. Perform five iterations of the bisection method to obtain the smallest positive root of the equation $f(x) = x^3 - 5x + 1 = 0$ (9)

Q.3 a. Find the inverse of the matrix using the LU decomposition method.

$$\mathbf{A} = \begin{bmatrix} 3 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 2 \end{bmatrix}$$
(10)

b. The system of equations Ax = b is to be solved iteratively by $x_{n+1} = Mx_n + b$. Suppose $A = \begin{bmatrix} 1 & k \\ 2k & 1 \end{bmatrix}$, $k \neq \sqrt{2}/2$, k real

(i) Find a necessary and sufficient condition on k for convergence of the Jacobi method.

(ii) For k = 0.25 determine the optimal relaxation factor w, if the system is to be solved with relaxation method. (8)

Q.4 a. Find the largest eigen value in modulus and the corresponding eigen vector of the matrix

$$\mathbf{A} = \begin{bmatrix} -15 & 4 & 3\\ 10 & -12 & 6\\ 20 & -4 & 2 \end{bmatrix}$$

using the power method.

b. Find all the eigenvalues of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 1 & 2 \\ -1 & 2 & 1 \end{bmatrix}$$

using the Jacobi method. Iterate till the off-diagonal elements, in magnitude, are less than 0.6. (10)

Q.5 a. For the following data, calculate the difference and obtain the forward and backward difference polynomials. Interpolate at x = 0.25. (8)

- b. Using the Chebyshev polynomials, obtain the least squares approximation of second degree for $f(x) = x^4$ on [-1, 1]. (10)
- **Q.6** a. Find the approximate value of

$$I = \int_{0}^{1} \frac{dx}{1+x}$$

using Simpson's rule. Obtain the actual error and bound of the error.

(8)

b. Evaluate the integral $I = \int_{1}^{2} \frac{2x \, dx}{x^4 + 1}$ using the Gauss-Legendre 1-point, 2-point and 3-point quadrature rules. (9)

Q.7 a. Solve the following initial value problem, $\frac{du}{dt} = -2t u^{2}$ u(0) = 1,using Euler's method. [Given h = 0.2; interval [0, 1]] (9)

b. Solve the system of equations

u' = -3u + 2v, u(0) = 0v' = 3u - 4v, v(0) = 0.5

With h = 0.2 on the interval [0, 0.4]. Use the classical Runge-Kutta fourth order method. (9)