Code: CS41 **Time: 3 Hours**

Subject: NUMERICAL & SCIENTIFIC COMPUTING

Max. Marks: 100

NOTE:

• Question 1 is compulsory and carries 28 marks. Answer any FOUR questions from the rest. Marks are indicated against each question.

MARCH 2011

- Parts of a question should be answered at the same place.
- All calculations should be up to three places of decimals.

a. Find a root of the equation $x^3 - 4x - 9 = 0$ using the bisection method in 4 stages. 0.1

- b. Apply Gauss-Jordan method to solve the equations x + y + z = 9;2x - 3y + 4z = 13; 3x + 4y + 5z = 40.
- c. Find the eigenvalues of the matrix $A = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$.
- d. Find the missing terms in the following table

ſ	Х	0	1	2	3	4
	у	1	2	4	?	16

- e. Obtain the Chebyshev linear polynomial approximation to the function $f(x) = x^3$ on [0,1]
- f. Evaluate $\Delta^2 \cos 2x$.
- g. A solid of revolution is formed by rotating about the x-axis, the area between the x-axis, the lines x = 0 & x = 1 and a curve through the points with the following co-ordinate (7×4)

united							
	x	0.0	0.25	0.50	0.75	1.0	
	у	1.0	0.9896	0.9589	0.9089	0.8415	

Estimate the volume of the solid formed using Simpson's rule.

- 20x + y 2z = 17;0.2 a. Using the Gauss-Seidel method, solve the system 3x + 20y - z = -18; 2x - 3y + 20z = 25.(9)
 - b. Solve the following matrix equation using LU decomposition method
 - $\begin{pmatrix} 1 & 3 & 8 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 1 \\ 6 \\ 4 \end{pmatrix}$ (9)

CS41 / MARCH - 2011

- 0.3 a. Find the largest eigenvalue and its corresponding eigenvector of the following matrix using Power method.
 - $\begin{vmatrix} -7 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{vmatrix}$ (9)
 - b. Use the Givens method to find the eigenvalues of the tridiogonal matrix
 - $\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}$
- a. Determine the interpolating polynomial that approximates to the function given in **O.4** the following table using Lagrange's formula and find f(0.5). (9)

Х	0	1	2	3	4
f(x)	3	6	11	18	27

- b. Find a real root of the equation $x^3+x-3=0$ which is close to1.2, correct to four decimal places using Newton's method. (9)
- Q.5 a. Given that

Fi

x1.01.11.21.31.41.51.6y7.9898.4038.7819.1299.4519.75010.031			1					
y 7.989 8.403 8.781 9.129 9.451 9.750 10.031	v	1.0	1.1	1.2	1.3	1.4	1.5	1.6
	y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

$$nd\frac{dy}{dx}$$
 and $\frac{d^2y}{dx^2}$ at x = 1.1 and 1.6 using

ng difference formula. (9)

b. For the data given in the table, find the minimum value of y.

Q.6 a. Evaluate $\int_{0}^{6} \frac{dx}{1+x^2}$ using (i) Trapezoidal rule (ii) Simpson's $\frac{1}{3}$ rule (iii) Simpson's $\frac{3}{8}$ rule and compare the result with its actual value. (10)

b. Evaluate the integral
$$I = \int_{-1}^{1} (1 - x^2)^{3/2} \cos x \, dx$$
 using Gauss-Legendre 3-point formula. (8)

CS41 / MARCH - 2011

ALCCS - OLD SCHEME

(9)

(9)

- **Q.7** a. Employ Taylor's method to obtain approximate value of y at x = 0.2 for the differential equation $\frac{dy}{dx} = 2y + 3e^x$, y(0) = 0. (8)
 - b. Using Runge-Kutta method of fourth order solve for y(0.1), y(0.2) given that $\frac{dy}{dx} = \frac{y^2 - x^2}{x^2 + y^2}, y(0) = 1$ (10)