MATHEMATICS

Time allowed : 3 hours

GENERAL INSTRUCTIONS :

(i) All questions are compulsory.
(ii) The question paper consists of 25 questions divided into three sections - A, B and C. Section A contains 10 questions of $\mathbf{3}$ marks each, Section B is of 10 questions of 4 marks each and Section C is of $\mathbf{5}$ questions of 6 marks each.
(iii) There is no overall choice. However, an internal choice has been provided in two questions of three marks each, two questions of four marks each and two questions of six marks each.
(iv) In question on construction, the drawing should be neat and exactly as per the given measurements.
(v) Use of calculators is not permitted.

 SECTION - A

Question numbers 1 to 10 carry three marks each.

1. Express the following as a rational expression in lowest terms :

$$
\frac{x^{3}-8}{x^{2}-4} \times \frac{x^{2}+6 x+8}{x^{2}-2 x+1} \div \frac{x^{2}+2 x+4}{x^{2}+2 x-3}
$$

2. Find 10th term from end of the A.P. 4, 9, 14,, 254.
3. Solve the following system of linear equations:

$$
a x+b y=a-b
$$

4. Find the L.C.M. of the following polynomials :
5. Solve for x :

$$
\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} ; a \neq 0, b \neq 0, x \neq 0
$$

Or

Solve for x :

$$
a b x^{2}+\left(b^{2}-a c\right) x-b c=0
$$

6. Find the number of terms of the A.P. $54,51,48, \ldots$. so that their sum is 513.
Or

If the nth term of an A.P. is $(2 n+1)$, find the sum of first n terms of the A.P.
7. A loan of Rs. 10,815 is to be returned in three equal half-yearly instalments. Calculate the amount of each instalment, if the rate of interest is $13 \frac{1}{3} \%$ per annum, compounded half-yearly.
8. A fan is available for Rs. 970 cash or Rs. 210 as cash down payment followed by three equal monthly instalments of Rs. 260 each. Find the rate of interest charged under instalment plan.
9. In the figure, $\triangle \mathrm{ABC}$ and are on the same base $\mathrm{BC} . \mathrm{AD}$ and BC interesect at O . Prove that

10. OD is perpendicular to a chord AB of a circle whose centre is O . If BC is a diameter, prove that $\mathrm{CA}=2 \mathrm{OD}$.

SECTION - B

Question numbers 11 to 20 carry 4 marks each.
11. Solve the following system of equations graphically:

Also find the points where the lines meet the x -axis.
12. The sum of two numbers a and b is 15 , and the sum of their reciprocals and $\frac{1}{b}$ is $\frac{3}{10}$. Find the numbers a and b.
13. A hemispherical bowl of internal radius 9 cm is full of liquid. The liquid is to be filled into cylindrical shaped small bottles each of diameter 3 cm and height 4 cm . How many bottles are needed to empty the bowl ?
14. Prove that

$$
\tan ^{2} A-\tan ^{2} B=\frac{\sin ^{2} A-\sin ^{2} B}{\cos ^{2} A \cos ^{2} B}
$$

Or

Find the value of

$$
\frac{-\tan \theta \cdot \cot \left(90^{\circ}-\theta\right)+\sec \theta \cdot \operatorname{cosec}\left(90^{\circ}-\theta\right)+\sin ^{2} 35^{\circ}+\sin ^{2} 55^{\circ}}{\tan 10^{\circ} \tan 20^{\circ} \tan 30^{\circ} \tan 70^{\circ} \tan 80^{\circ}}
$$

15. Draw a circle of radius 3.5 cm . From a point P outside the circle at a distance of 6 cm from the centre of circle, draw two tangents to the circle.
16. Find the value of x such that $\mathrm{PQ}=\mathrm{QR}$ where the coordinates of P, Q and R are $(6,-1) ;(1,3)$ and $(x, 8)$ respectively.

Or

Find the point on x -axis which is equidistant from the points $(7,6)$ and
17. The line-segment joining the points $(a \overline{3} d(1), 2)$ is trisected at the points P and Q . If the coordinates of P and Q are and respectively, find the values of p and q .
18. Find the mean of the following distribution:

Class	Number of Students
$4-8$	2
$8-12$	12
$12-16$	15
$16-20$	25
$20-24$	18
$24-28$	12
$28-32$	13
$32-36$	3

19. Given below is the expenditure fo a person on different items out of his salary of Rs. 14,400.

Item	Clothing	Food	Rent	Education	Others	G. Total
Expenditure	2,800	3,600	3,600	1,800	2,600	14,400
(in Rupees)						

Draw a pie-chart to depict the above data.
20. A card is drawn at random from a well shuffled pack of 52 cards. Find the probability that the card drawn is neither a red card nor a queen.

SECTION - C

Question numbers 21 to 25 carry 6 marks each.

21. Prove that in a right angled triangle the square on the hypotenuse is equal to sum of the squares on other two sides.
Using the above result, prove that the sum of squares on the sides of a rhombus is equal to sum of squares on its diagonals.
22. On a horizontal plane there is a vertical tower with a flag pole on the top of the tower. At a point 9 metres away from the foot of the tower the angle of elevation of the top and bottom of the flag pole are 60° and 30° respectively. Find the height of the tower and flag pole mounted on it.

Or

From a building 60 metres high the angle of depression of the top and bottom of lamppost are 30° and 60° respectively. Find the distance between lamppost and building. Also find the difference of height between building and lamppost.
23. A tent is in the shape of a right circular cylinder up to a height of 3 m and conical above it. The total height of the tent is 13.5 m and radius of base is 14 m . Find the cost of cloth required to make the tent at the rate of Rs. 80 per sq. m.

Or

The radii of circular ends of a solid frustum of a cone are 33 cm and 27 cm and its slant height is 10 cm . Find its total surface area.
24. If a line touches a circle and from the point of contact a chord is drawn, prove that the angles which this chord makes with the given line are equal respectively to the angles formed in the corresponding alternate segments.
Using the above theorem, prove the following :
P is mid point of arc APB. Prove that tangent QR drawn at P to the circle is parallel to $A B$.

Marking Scheme - Mathematics

General Instructions

1. The Marking Scheme provides general guidelines to reduce subjectivity and maintain uniformity among large number of examiners involved in the marking. The answers given in the marking Scheme are the best suggested answers.
2. Marking is to be done as per instructions provided in the marking scheme. (It should not be done according to one's own interpretation or any other consideration.) Marking Scheme should be strictly adhered to and religiously followed.
3. Alternative methods are accepted. Proportional marks are to be awarded.
4. If a question is attempted twice and the candidate has not crossed any answer, only first attempt is to be evaluated. Write EXTRA with second attempt.
5. A full scale of marks 0 to 100 has to be used. Please do not hesitate to award full marks if the answer deserves it.

QUESTION PAPER CODE 30/1/1

EXPECTED ANSWERS/YALUE POINTS
 $\Rightarrow{ }^{7}=32+41 \times 5=209$
 SECTION - A

1. $\frac{x^{3}-8}{x^{2}-4} \times \frac{x^{2}+6 x+8}{x^{2}-2 x+1} \div \frac{x^{2}+2 x+4}{x^{2}+2 x-3}$

$$
\begin{aligned}
& =\left[\frac{(x-2)\left(x^{2}+2 x+4\right)}{(x-2)(x+2)}\right] \times\left[\frac{(x+2)(x+4)}{(x-1)(x-1)}\right] \times\left[\frac{(x+3)(x-1)}{\left(x^{2}+2 x+4\right)}\right] \\
& =\frac{x^{2}+7 x+12}{x-1}
\end{aligned}
$$

2. Here $\mathrm{a}=4, \mathrm{~d}=5, \mathrm{t}_{\mathrm{n}}=254$

$$
\therefore \quad 254=4+(n-1) 5
$$

3. $a x+b y=a-b$ \qquad
.(ii)
Multiplying (i) by a and (ii) by band adding, we get

$$
\Rightarrow x=1
$$

1 m
Substituting $x=1$ in (i), we get
4.

$$
\begin{equation*}
x^{2}-9 x+20=(x-4)(x-5) \tag{i}
\end{equation*}
$$

\qquad
$x^{2}-16=(x-4)(x+4)$ \qquad
(ii)

LCM of (i), (ii) and (iii) is

$$
2(x-4)\left(x^{2}+4 x+16\right)(x-5)(x+4)
$$

$11 / 2 \mathrm{~m}$
or $2\left(x^{3}-64\right)\left(x^{2}-x-20\right)$
(4) $x=0$
b a
5. $\frac{1}{a+b+x}=\frac{1}{a}+\frac{1}{b}+\frac{1}{x} \Rightarrow \frac{1}{a+b+x}-\frac{1}{x}=\frac{1}{a}+\frac{1}{b}$
$\frac{-(a+b)}{x(a+b+x)}=\frac{a+b}{a b}$
$\begin{array}{rrr}\therefore \quad \mathrm{x}= & -\mathrm{a},-\mathrm{b} \\ \underline{\text { OR }}\end{array}$
$\left.\begin{array}{l}a b x^{2}+b^{2} x-a c x-b c=0 \\ b x(a x+b)-c(a x+b)=0\end{array}\right\}$

1 m

1 m

1 m
6. Let n be the number of terms of A.P. $54,51,48, \ldots .$. so that their sum is 513 .

$$
\begin{array}{llr}
& \text { We know } \mathrm{S}_{\mathrm{n}}=\frac{\mathrm{n}}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}] & 1 / 2 \mathrm{~m} \\
\therefore & 513 \times 2=\mathrm{n}[2 \times 54+(\mathrm{n}-1)(-3)] & 1 \mathrm{~m} \\
\text { or } & \mathrm{n}^{2}-37 \mathrm{n}+342=0 \text { or }(\mathrm{n}-18)(\mathrm{n}-19)=0 & (1 / 2+1 / 2)=1 \mathrm{~m} \\
\therefore & n=18 \text { or } 19 & 1 / 2 \mathrm{~m}
\end{array}
$$

OR

$$
\begin{array}{ll}
\therefore & \mathrm{t}_{1}=3, \mathrm{t}_{2}=5, \mathrm{t}_{3}=7 \\
\therefore & \mathrm{a}=3, \mathrm{~d}=2
\end{array}
$$

$$
=\mathrm{n}(\mathrm{n}+2)
$$

7. Let each instalment be =Rs x
\therefore Present value of all instalments together

This is given equal to Rs 10815

$$
\frac{4096 \times 10815}{10815}=x
$$

1 m

Each instalment $=$ Rs 4096
8. Cash price of fan $=$ Rs 970

Price under instalment plan $=$ Rs $(210+260 \times 3)$

$$
=\text { Rs } 990 \quad 1 \mathrm{~m}
$$

$\therefore \quad$ Interest $=$ Rs 20
Principals owed each month (in rupees)
760, 500, 240
Total principal owed for one month $=$ Rs $1500 \quad 1 \mathrm{~m}$
Rate of interest
\therefore Rate of interest $=16 \%$
9.

1 m

$$
\begin{aligned}
& \therefore \quad \Delta S^{\prime} \text { AOX and DOY are similar }
\end{aligned}
$$

10.

Figure
$1 / 2 \mathrm{~m}$
$1 / 2 \mathrm{~m}$

$$
\mathrm{OB}=\frac{1}{2} \mathrm{BC}
$$

O and D are mid-point of sides $B C$ and $A B$ respectively.
$\therefore \quad \mathrm{OD} \| \mathrm{CA}$
1 m

1 m

$$
\Rightarrow \mathrm{CA}=2 . \mathrm{OD}
$$

SECTION - B

11. Making correct tables of ordered pairs

$$
(1 / 2+1 / 2) m
$$

Correct graph of equations

$$
(1+1)=2 \mathrm{~m}
$$

Solution: $x=1, y=2$ $1 / 2 \mathrm{~m}$

The lines meet x -axis at $(5,0)$ and $(-2,0)$
12.
(i)
$1 / 2+1 / 2=1 \mathrm{~m}$
$\Rightarrow \frac{15}{\mathrm{ab}}=\frac{3}{10} \quad$ or $\quad \mathrm{ab}=50$
1 m
$\therefore \quad a+\frac{50}{a}=15$ or $a^{2}-15 a+50=0$
1 m
$\therefore \quad(a-5)(a-10)=0 \Rightarrow a=5$ or 10
From (i) and (ii), $a=10, b=5$

$$
\text { or } a=5, b=10\}
$$

13. Volume of liquid in hemispherical bowl

$$
=\frac{2}{3} \pi(9)^{3} \mathrm{~cm}^{3}=486 \pi \mathrm{~cm}^{3}
$$

$$
(1 / 2+1)=11 / 2 \mathrm{~m}
$$

Volume of one cylinderical bottle $=\pi\left(\frac{3}{2}\right)^{2} \times 4 \mathrm{~cm}^{3}=9 \pi \mathrm{~cm}^{3}$
Let n be the number of bottles

$$
\therefore \quad \mathrm{n}=\frac{486 \pi}{9 \pi}=54
$$

$\therefore \quad 54$ bottles can be filled from the bowl
14. $\mathrm{LHS}=\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}-\frac{\sin ^{2} \mathrm{~B}}{\cos ^{2} \mathrm{~B}}=\frac{\sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B}-\cos ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}{\cos ^{2} \mathrm{~A} \cdot \cos ^{2} \mathrm{~B}}$

$$
\begin{array}{ll}
=\frac{\sin ^{2} A\left(1-\sin ^{2} B\right)-\left(1-\sin ^{2} \mathrm{~A}\right) \sin ^{2} \mathrm{~B}}{\cos ^{2} \mathrm{~A} \cdot \cos ^{2} \mathrm{~B}} & 11 / 2 \mathrm{~m} \\
=\frac{\sin ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~B}}{\cos ^{2} \mathrm{~A} \cdot \cos ^{2} \mathrm{~B}} & 1 \mathrm{~m}
\end{array}
$$

OR

$$
\cot \left(90^{\circ}-\theta\right)=\tan \theta, \operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta
$$

$$
\sin ^{2} 55^{\circ}=\sin ^{2}(90-35)^{\circ}=\cos ^{2} 35^{\circ}
$$

$$
2^{1 / 2} \mathrm{~m}
$$

$$
\tan 80^{\circ}=\cot 10^{\circ}, \tan 70^{\circ}=\cot 20^{\circ} \text { and } \tan 30^{\circ}=\frac{1}{\sqrt{3}}
$$

\therefore Given exp ression

$$
\begin{aligned}
& =(1+1) \sqrt{3} \\
& =2 \sqrt{3}
\end{aligned}
$$

$\tan 10^{\circ} \cot 10^{\circ} \tan 20^{\circ} \cot 20^{\circ} \cdot \frac{1}{\sqrt{3}}$	1 m
	$1 / 2 \mathrm{~m}$

15. Correct construction with correct measurements.
16. $\mathrm{P}(6,-1), \mathrm{Q}=(1,3), \mathrm{R}=(\mathrm{x}, 8)$

$$
(1+1)=2 \mathrm{~m}
$$

$$
\begin{aligned}
\mathrm{PQ}^{2}=\mathrm{QR}^{2} & \Rightarrow(\mathrm{x}-1)^{2}=16 \\
& \Rightarrow \mathrm{x}-1= \pm 4
\end{aligned}
$$

1 m

1 m

OR

Any point on x -axis is $(\mathrm{x}, 0)$
$1 / 2 \mathrm{~m}$
Let P be $(\mathrm{x}, 0), \mathrm{Q}(7,6)$ and $\mathrm{R}(-3,4)$
It is given that
$1 / 2 \mathrm{~m}$
$\Rightarrow(\mathrm{x}-7)^{2}+36=(\mathrm{x}+3)^{2}+16$
$\Rightarrow(\mathrm{x}+3)^{2}-(\mathrm{x}-7)^{2}=20$
$\left(x^{2}+6 x+9\right)-\left(x^{2}-14 x+49\right)=20$
$\Rightarrow 20 \mathrm{x}-40=20 \Rightarrow \mathrm{x}=3$
The required point is $(3,0)$
17.

Figure
$1 / 2 \mathrm{~m}$
$11 / 2 \mathrm{~m}$
$\left.\begin{array}{ll} & \text { Again } \mathrm{AQ}: \mathrm{QB}=2: 1 \\ \therefore \quad \mathrm{q}=\frac{4-4}{3}=0\end{array}\right\}$
18.

xi :	6	10	14	18	22	26 ¢	f33)	1034	$\Rightarrow \quad \sum \mathrm{fi}=100$	$1 / 2 \mathrm{~m}$
fi :	2	12	15	25	18	12	13	3		$1 / 2 \mathrm{~m}$
fixi :	12	120	210	450	396	312	390	102		2 m

$$
(1 / 2+1 / 2)=1 \mathrm{~m}
$$

19. Calculating the central angles as

Item:	$\underline{\text { Clothing }}$	$\underline{\text { Food }}$	$\underline{\text { Rent }}$	$\underline{\text { Education }}$	$\underline{\text { Others }}$	$\underline{\text { Total }}$
Expenditure:	2800	3600	3600	1800	2600	14400
Central Angles	70°	90°	90°	45°	65°	360°

20. Total number of Cards $=52$

Number of red cards and number of black queens $=26+2=28$
$\therefore \quad P($ Neither a red card nor a queen $)=\frac{52-28}{52}=\frac{24}{52}=\frac{6}{13}$

SECTION - C

21. Correct figure, Correctly Stated Given, To prove, Construction

Correct Proof :

$$
\begin{aligned}
& \text { Here } \mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA} \\
& \mathrm{BO}=\frac{\mathrm{BD}}{2} \text { and } \mathrm{AO}=\frac{\mathrm{AC}}{2}
\end{aligned}
$$

In right triangle AOB

$$
\begin{array}{ll}
\mathrm{AB}^{2}=\mathrm{OB}^{2}+\mathrm{OA}^{2}=\frac{\mathrm{BD}^{2}}{4}+\frac{\mathrm{AC}^{2}}{4} & 1 / 2 \mathrm{~m} \\
\text { or } 4\left(\mathrm{AB}^{2}\right)=\mathrm{BD}^{2}+\mathrm{AC}^{2} & \frac{\dot{3} \sqrt{3}}{9}+\sqrt{9} \sqrt{3} \underline{\underline{Q}}^{\circ} \tan 6 \theta^{\circ}=\sqrt{3} \\
\text { or } \mathrm{AB}^{2}+\mathrm{BC}^{2}+\mathrm{CD}^{2}+\mathrm{DA}^{2}=\mathrm{BD}^{2}+\mathrm{AC}^{2} & 9
\end{array}
$$

22.

Figure
1 m
In right $\triangle B C D$

$$
\Rightarrow \mathrm{x}=3 \sqrt{3} \cong 5.196 \quad 1 \mathrm{~m}
$$

$\Rightarrow \mathrm{y}=6 \sqrt{3}$ or 10.392
$\therefore \quad \mathrm{x}=5.196 \mathrm{~m}$ and $\mathrm{y}=10.392 \mathrm{~m}$
1 m Height of Tower $=\quad$ or $5.196 \mathrm{~m} ;$ Height of Flag pole $=6 \sqrt{3}$ or 10.392 m

OR

Correct Figure (angles of depression should be shown) 1 m Getting the trigonometric equation

$$
\begin{aligned}
& \frac{60-x}{y}=\tan 30^{\circ} \\
& \text { or } \frac{60-x}{y}=\frac{1}{\sqrt{3}}
\end{aligned}
$$

Again, $\frac{60}{(60-x) \sqrt{3}}=\tan 60^{\circ}=\sqrt{3}$
$\Rightarrow \quad 60=3(60-x)$
1 m

23.

Figure
1 m

$$
\begin{gathered}
\lambda^{2}=14^{2}+(10.5)^{2}=(17.5)^{2} \\
\Rightarrow \lambda=17.5
\end{gathered}
$$

$11 / 2 \mathrm{~m}$

Area of cloth required $=$
1 m
$=(264+770)$ or $1034 \mathrm{~m}^{2}$
$\therefore \quad$ Cost of cloth $=$ Rs $(1034 \times 80)=$ Rs 82720

OR

Total surface area of a solid frustum

$$
\begin{array}{ll}
\mathrm{S}=\pi\left[\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \lambda+\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}\right] & 11 / 2 \\
\text { Here } \mathrm{r}_{1}=33 \mathrm{~cm}, \mathrm{r}_{2}=27 \mathrm{~cm}, \lambda=10 \mathrm{~cm} & 1 / 2 \mathrm{~m} \\
\therefore \mathrm{~S}=\frac{22}{7}[(33+27) \times 10+1089+729] \mathrm{cm}^{2} & 2 \mathrm{~m} \\
=\frac{22}{7}[2418] \mathrm{cm}^{2} & 2 \mathrm{~m} \\
=7599.43 \mathrm{~cm}^{2} &
\end{array}
$$

24. Correct figure, correctly stated Given, To Prove and Construction
$\left(1 / 2+^{1 / 2}+1 / 2+1 / 2\right)=2 \mathrm{~m}$ Correct Proof :

Pis the mid-point of arc APB

$$
\Rightarrow \quad \widehat{\mathrm{AP}}=\overparen{\mathrm{PB}} \Rightarrow \mathrm{AP}=\mathrm{PB}
$$

.(ii)
$1 / 2 \mathrm{~m}$
From (i) and (ii)
25. Taxable income $=$ Rs $(18200 \times 12-8400-6000-30000)$

$$
=\text { Rs } 174000
$$

Income Tax

$$
=\text { Rs } 26200
$$

1 m

Total Savings
$\therefore \quad$ Maximum Rebate on Savings
Rebate for being a women = Rs 5000
$1 / 2 \mathrm{~m}$

Income Tax payable
$\begin{array}{rlr}\text { Education cess } 2 \% & =\text { Rs } 214 & 1 / 2 \mathrm{~m} \\ \text { Total Tax payable } & =\text { Rs } 10914 & 1 / 2 \mathrm{~m} \\ \text { Tax already paid } & =\operatorname{Rs}(900 \times 11)=\text { Rs } 9900 & 1 / 2 \mathrm{~m}\end{array}$
Tax to be paid in the last month

$$
\begin{aligned}
& =\operatorname{Rs}(10914-9900) \\
& =\text { Rs } 1014
\end{aligned}
$$

QUESTION PAPER CODE 30/1

EXPECTED ANSWERS/VALUE POINTS

1.

$$
\begin{aligned}
& =\frac{\left(x^{2}+4 x-32\right)-\left(x^{2}+4 x-21\right)}{x^{2}+5 x-24}+\frac{x+8}{x^{2}+5 x-24} \\
& =\frac{x+8-11}{(x+8)(x-3)}=\frac{(x-3)}{(x+8)(x-3)} \\
& =\frac{1}{x+8}
\end{aligned}
$$

Note : If a candidate does $\left(\frac{x+7}{x+8}-\frac{x-4}{x-3}\right)+\frac{x+8}{x^{2}+5 x-24}$ to get
$\frac{\left[\left(x^{2}+4 x-21\right)-\left(x^{2}+4 x-32\right)\right]+x+8}{x^{2}+5 x-24}$
$=\frac{x+19}{x^{2}+5 x-24}$, full credit is to be given.
2. We have to find $11+13+\ldots+99$

Here $a=11, d=2, t_{n}=99 \quad 1 / 2 m$
$99=11+(\mathrm{n}-1) \times 2 \Rightarrow \mathrm{n}=45 \quad 1 \mathrm{~m}$

$$
=\frac{45}{2}[11+99]=45 \times 55=2475
$$

1 m
3. $b x+a y=2 a b$ \qquad
\qquad
Multiplying (i) by band (ii) by a and adding we get
$\left(a^{2}+b^{2}\right) x=2 a b^{2}-a b^{2}+a^{3}$

$$
=a b^{2}+a^{3}=a\left(a^{2}+b^{2}\right)
$$

$\Rightarrow \mathrm{x}$

1 m
Putting $\mathrm{x}=\mathrm{a}$ in (i) to get $\mathrm{y}=\mathrm{b}$

OR

Let x be tens' digit and y be units' digit
Number is
According to question,

Also,

$$
2 x=y \Rightarrow x=3
$$

4.

(i)
$q(x)=(x+3)(x+4)\left(x^{2}+7 x+b\right) \ldots \ldots \ldots \ldots \ldots \ldots .$. (ii) $\}$
HCF $=(x+1)(x+3)$
is a factor of
$\therefore \quad(-3)^{2}+2(-3)+\mathrm{a}=0 \quad \Rightarrow \mathrm{a}=-3$
1 m
and $(x+1)$ is a factor of

$$
\begin{aligned}
& \Rightarrow(-1)^{2}+7(-1)+b=0 \\
& \Rightarrow b=6
\end{aligned}
$$

1 m
5.

$$
\begin{aligned}
\therefore \quad x & =\frac{-\left(b^{2}-a^{2}\right) \pm \sqrt{\left(b^{2}-a^{2}\right)^{2}+4 a^{2} b^{2}}}{2 a^{2} b^{2}} \\
& =\frac{-\left(b^{2}-a^{2}\right) \pm\left(a^{2}+b^{2}\right)}{2 a^{2} b^{2}}=\frac{1}{b^{2}}, \frac{-1}{a^{2}}
\end{aligned}
$$

OR

$$
\frac{x-1}{x-2}+\frac{x-3}{x-4}=\frac{10}{3}
$$

$$
\Rightarrow \quad \frac{1}{x-2}+\frac{1}{x-4}=\frac{4}{3}
$$

$$
\Rightarrow \quad 3(2 x-6)=4\left(x^{2}-6 x+8\right)
$$

$$
\text { or } 4 x^{2}-30 x+50=0 \quad \text { or } \quad 2 x^{2}-15 x+25=0
$$

$$
(2 x-5)(x-5)=0 \Rightarrow x=5 \text { or } x=\frac{5}{2}
$$

1 m
6. $\quad t_{n}=a+(n-1) d$, where a is the first term and d is common difference. $1 / 2 \mathrm{~m}$

$$
\therefore \mathrm{t}_{8}=\mathrm{a}+7 \mathrm{~d}=0 \Rightarrow \mathrm{a}=-7 \mathrm{~d} \quad 11 / 2 \mathrm{~m}
$$

$$
\mathrm{t}_{18}=\mathrm{a}+17 \mathrm{~d}=-7 \mathrm{~d}+17 \mathrm{~d}=10 \mathrm{~d}
$$

$$
1 \mathrm{~m}
$$

$$
\mathrm{t}_{38}=\mathrm{a}+37 \mathrm{~d}=-7 \mathrm{~d}+37 \mathrm{~d}=30 \mathrm{~d}
$$

$$
1 / 2 \mathrm{~m}
$$

$$
\therefore \quad \mathrm{t}_{38}=3 . \mathrm{t}_{18}
$$

7. \quad Cash price of machine $=$ Rs 9000

Price under instalment plan $=$ Rs $(2200+5 \times 1400)$

$$
\text { = Rs } 9200
$$

\therefore Interest charged $=$ Rs $\quad=$ Rs 200
Principals to be paid in first, second,, fifth month (in Rs)
6800, 5400, 4000, 2600, 1200
Total principal for one month $=$ Rs 20000

Rate of interest
1 m
\therefore Interest $=12 \%$
8. Present value of first instalment
$1 / 2 \mathrm{~m}$

Present value of second instalment $=$ Rs $\left(135200 \times \frac{25}{26}\right)=$ Rs 130000

Present value of third instalment

$$
=\text { Rs } 125000
$$

$1 / 2 \mathrm{~m}$

Total present value $=$ Rs 390200
Total amount paid in installments $=\operatorname{Rs}(140608 \times 3)=$ Rs 421824
9.

Figure
$1 / 2 \mathrm{~m}$
Draw AD \perp CB. Let and (Given)

In right (i)	
and	$\mathrm{AC}^{2}=\mathrm{AD}^{2}+\mathrm{x}^{2} \ldots \ldots \ldots \ldots \ldots .$. (ii)	

From (ii), we have $\mathrm{AD}^{2}=\mathrm{AC}^{2}-\mathrm{x}^{2}$

$$
\begin{array}{rlr}
\therefore \quad \mathrm{AB}^{2} & =A C^{2}+8 \mathrm{x}^{2} & 1 \mathrm{~m} \\
\Rightarrow 2 \mathrm{AB}^{2} & =2 \mathrm{AC}^{2}+16 \mathrm{x}^{2} \\
& =2 \mathrm{AC}^{2}+(4 \mathrm{x})^{2}=2 \mathrm{AC}^{2}+\mathrm{BC}^{2} & 1 / 2 \mathrm{~m}
\end{array}
$$

10. Let $\mathrm{AD}=\mathrm{x}$, then $\mathrm{DE}=15-\mathrm{x}$

As

SECTION - B

11. Making correct tables of ordered pairs
$(1 / 2+1 / 2) m$
Correct graphs of equations $(1+1) \mathrm{m}$

Solution : $\mathrm{x}=3, \mathrm{y}=2$
Lines meet y-axis at $1 / 2 \mathrm{~m}$
12. Let x be tens' digit and y , the units' digit
\qquad 1 m
From (i) and (ii), we get

$$
\begin{aligned}
& \Rightarrow \quad x^{2}+2 x-15=0 \Rightarrow(x+5)(x-3)=0 \\
& \therefore \quad x=3, \quad x=-5 \text { is rejected }
\end{aligned}
$$

Let n be the number of spheres formed.

$$
\begin{aligned}
\therefore \quad \mathrm{n} \times \frac{4}{3} \pi & =\frac{32}{3} \pi \\
\Rightarrow \mathrm{n} & =8
\end{aligned}
$$

Number of spheres formed $=8$
1 m
14. The given identity can be written as

$$
\begin{aligned}
\text { LHS } & =\frac{\sec x+\tan x+\sec x-\tan x}{\sec ^{2} x-\tan ^{2} x} \\
& =\frac{2 \sec x}{1}=\frac{2}{\cos x}=\text { RHS }
\end{aligned}
$$

Alternatively, LHS $=\frac{\cos x}{1-\sin x}-\frac{1}{\cos x}=\frac{\cos ^{2} x-1+\sin x}{\cos x(1-\sin x)}$

$$
=\frac{\sin x(1-\sin x)}{\cos x(1-\sin x)}=\tan x
$$

Again R.H.S. $=\frac{1}{\cos x}-\frac{\cos x}{1+\sin x}=\frac{1+\sin x-\cos ^{2} x}{\cos x(1+\sin x)}$

$$
=\frac{\sin x(1+\sin x)}{\cos x(1+\sin x)}=\tan x=\text { LHS }
$$

OR

$\sec ^{2} 54^{\circ}=\sec ^{2}(90-36)^{\circ}=\operatorname{cosec}^{2} 36^{\circ}, \operatorname{cosec}^{2} 57^{\circ}=\operatorname{cosec}^{2}(90-33)^{\circ}=\sec ^{2} 33^{\circ}$
$\sec ^{2} 52^{\circ}=\sec ^{2}(90-38)^{\circ}=\operatorname{cosec}^{2} 38^{\circ}, \sin ^{2} 45^{\circ}=\left(\frac{1}{\sqrt{2}}\right)^{2}=\frac{1}{2}$
2 m
\therefore Given expression

$$
=1+2-\frac{1}{2}=\frac{5}{2}
$$

1 m
15. Correct construction of Quadrilateral ABCD

Similar Quadrilateral A'BC'D'
[Dimensions to be correct]
16. Let $\mathrm{A}(0,0), \mathrm{B}(5,5), \mathrm{C}(-5,5)$ be the vertices of the triangle

$$
\mathrm{BC}^{2}=(5+5)^{2}+(5-5)^{2}=100
$$

$$
\mathrm{AC}^{2}=(0+5)^{2}+(0-5)^{2}=50
$$

$$
\therefore \quad \mathrm{AB}=\mathrm{AC} \text { and } \mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}
$$

$$
1 / 2 \mathrm{~m}
$$

$\therefore \quad \triangle \mathrm{ABC}$ is an isosceles right triangle

OR

1 m
$P B^{2}=(x+1)^{2}+(y-5)^{2}=x^{2}+y^{2}+2 x-10 y+26$
1 m
$\mathrm{PA}=\mathrm{PB} \Rightarrow \mathrm{PA}^{2}=\mathrm{PB}^{2}$
$\therefore \quad x^{2}+y^{2}-10 x-2 y+26=x^{2}+y^{2}+2 x-10 y+26$

$$
12 x=8 y \Rightarrow 3 x=2 y
$$

17.

$$
\begin{array}{lc}
& 1 / 2 \mathrm{~m} \\
\text { Let the coordinates of } \mathrm{Pbe}(\mathrm{x}, \mathrm{y}) & 1 / 2 \mathrm{~m} \\
& \\
\therefore \quad \mathrm{P}(3,-2) \text { lies on } & 11 / 2 \mathrm{~m} \\
& 1 / 2 \mathrm{~m} \\
& 1 \mathrm{~m}
\end{array}
$$

Note : If a candidate takes the ratio $2: 1$ and finds full credit may be given.

18.	xi	10	15	p	25	30
	fi	5	10	7	8	2
	fixi	50	150	7 p	200	60

$1 / 2 \mathrm{~m}$
$11 / 2 \mathrm{~m}$
$x=\frac{3}{8} \mathrm{fi}=3, y=\frac{7}{3}=-2$
$\therefore \quad 18.75=\frac{460+7 \mathrm{p}}{32}$
$600=460+7 \mathrm{p}$
$\Rightarrow \mathrm{p}=20$
19. For calculating correct central angles as

Bus	Cycle	$\underline{\text { Train }}$	$\underline{\text { Car }}$	$\underline{\text { Scooter }}$
60°	90°	120°	40°	50°

Correct Pie chart
$11 / 2 \mathrm{~m}$
$21 / 2 \mathrm{~m}$
20. (i) P (Red or White)
(ii) $\quad \mathrm{P}($ Not Black $)=\frac{7}{9}$
(iii) $\mathrm{P}($ Neither white nor Black $)=\frac{8}{18}=\frac{4}{9}$

SECTION - C

21. Correct figure, Correctly stated Given, To prove, Construction

$$
\Delta \mathrm{COD} \sim \Delta \mathrm{AOB}
$$

$$
\begin{aligned}
& \frac{\operatorname{ar}(\Delta \mathrm{COD})}{84}=\frac{1}{4} \Rightarrow \operatorname{ar}(\Delta \mathrm{COD})=21 \mathrm{~cm}^{2} \quad(1 / 2+1 / 2)=1 \mathrm{~m}
\end{aligned}
$$

22.

Figure
1 m
In

$$
\Rightarrow \mathrm{y}=\sqrt{3} \mathrm{x}
$$

$11 / 2 \mathrm{~m}$
In $\triangle B C O, \frac{y}{150-x}=\tan 30^{\circ}$
1 m
$\Rightarrow \frac{\sqrt{3} \mathrm{x}}{150-\mathrm{x}}=\frac{1}{\sqrt{3}}$

$$
\Rightarrow 4 x=150
$$

1 m

1 m

$$
\left.\begin{array}{l}
y=\sqrt{3} x=37.5 \sqrt{3} \\
\text { or } \frac{75}{2} \times 1.732=64.95 \mathrm{~m}
\end{array}\right\}
$$

OR

Figure
1 m
Let $P R=x \mathrm{~m}$ and $\mathrm{AB}=\mathrm{hm}$

$$
\begin{gathered}
\text { In } \triangle \mathrm{ARP}, \frac{\mathrm{~h}-10}{\mathrm{x}}=\tan 60^{\circ}=\sqrt{3} \\
\Rightarrow \quad \mathrm{x}=\frac{\mathrm{h}-10}{\sqrt{3}}
\end{gathered}
$$

In $\triangle \mathrm{PRB}, \frac{10}{\mathrm{x}}=\tan 30^{\circ}=\frac{1}{\sqrt{3}}$

$$
\therefore \quad \mathrm{x}=10 \sqrt{3}
$$

$\therefore \quad$ Distance of hill from ship $=10 \sqrt{3} \mathrm{~m}$ or 17.32 m

$$
\begin{array}{ll}
\therefore & \frac{\mathrm{h}-10}{\sqrt{3}}=10 \sqrt{3} \\
\Rightarrow \quad \mathrm{~h}=40 & 11 / 2 \mathrm{~m} \\
& \\
& 1 / 2 \mathrm{~m}
\end{array}
$$

Figure	
Capacity (Volume) of Tent	
= Volum	ylinderical Part + Volume of Conical Part

$\therefore \quad$ Cost of canvas for making tent

$$
=\operatorname{Rs}(100 \times 75.9)=\operatorname{Rs} 7590
$$

OR

Figure
1 m

1 m
Volume of bucket

$$
\begin{aligned}
& =\left[\frac{1}{3} \times \frac{22}{7} \times 28^{2} \times 60-\frac{1}{3} \times \frac{22}{7} \times 7^{2} \times 15\right] \mathrm{cm}^{3} \\
& =\frac{1}{3} \times \frac{22}{7} \times 15\left[4 \times 28^{2}-7^{2}\right] \mathrm{cm}^{3} \\
& =\frac{22 \times 15}{21} \times 49(63) \mathrm{cm}^{3}=48510 \mathrm{~cm}^{3}
\end{aligned}
$$

$11 / 2 \mathrm{~m}$
Total surface area $=\left[\left(\pi .28 \times \lambda-\pi .7 \times \lambda_{1}\right)+\pi(7)^{2}\right] \mathrm{cm}^{2}$ where $\lambda=\sqrt{60^{2}+28^{2}}$ and $\lambda_{1}=\sqrt{15^{2}+7^{2}}$

$$
\begin{array}{ll}
=\sqrt{4384} & =\sqrt{274}=16.55 \\
=66.21 &
\end{array}
$$

$$
1 \mathrm{~m}
$$

$$
=5616 \mathrm{~cm}^{2} \text { (app.) }
$$

Alternately, using the formula

Figure
1 m

$$
\mathrm{AB}=28 \mathrm{~cm}, \mathrm{CD}=7 \mathrm{~cm} \Rightarrow \mathrm{~PB}=21 \mathrm{~cm}
$$

$$
\therefore \quad \lambda=\sqrt{2466}=49.66
$$

$$
\begin{aligned}
\text { Volume } & =\frac{\pi \mathrm{h}}{3}\left[\left(\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}+\mathrm{r}_{1} \mathrm{r}_{2}\right)\right] \\
& =\frac{22}{7} \times \frac{45}{3}\left[(28)^{2}+(7)^{2}+28 \times 7\right] \mathrm{cm}^{3} \\
& =\frac{330}{7}[784+49+196] \mathrm{cm}^{3} \\
& =48510 \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { Total Surface area } & =\pi\left[\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) \lambda+\mathrm{r}_{2}^{2}\right] & 1 / 2 \mathrm{~m} \\
& =\frac{22}{7}[(28+7)(49.66)+49] \mathrm{cm}^{2} & \\
& =22[255.3]=5616.6 \mathrm{~cm}^{2} & 11 / 2 \mathrm{~m}
\end{array}
$$

24. Correct figure, correctly stated Given, To Prove and Construction

$$
\begin{align*}
& \therefore \quad \mathrm{DP}^{2}=\mathrm{DA} . \mathrm{DB} \tag{i}\\
& \mathrm{DQ}^{2}=\mathrm{DA} . \mathrm{DB} \tag{ii}
\end{align*}
$$

25. Taxable income

$$
\begin{aligned}
& \qquad=\text { Rs } 214000 \\
& \text { Income Tax }
\end{aligned}
$$

$\stackrel{\dot{D}}{=} \operatorname{Rs} \operatorname{Rs}\left(21000 \times 12-6000-4000 \times \frac{1}{2}-30000\right)^{1 / 2 \mathrm{~m}}$
1 m

Total Savings
Maximum Rebate for savings

Additional Rebate for senior citizen = Rs 20000
$1 / 2 \mathrm{~m}$
Tax payable

Education cess 2\% = Rs 154
Total Tax payable = Rs 7854

$$
\text { Tax already paid = Rs } 6600
$$

Tax to be paid in the last month $=$ Rs 1254

