1977 m.		
Reg. No		

Paper CM 555 A

Fourth Semester M.Com. Degree Examination, May 2013 COMMERCE

Optional – I : Financial Management and Investment Science (FMAIS)
Security Analysis and Portfolio Management – II

Time: 3 Hours

Max. Marks: 70

SECTION - A

Note: 1) Answer any four questions.

- 2) Each question carries 10 marks.
- 3) Answer to each theory question should not exceed four pages. (4×10=40)
- 1. What is CAPM? What are its assumptions? Explain its validity in the Indian stock market.
- 2. Assume that two securities constitute the market portfolio. These securities have the following expected returns, standard deviation and proportions.

Security	Expected Returns	Standard Deviation	Proportion
Α	10%	20%	.40
В	15%	28%	.60

Based on this information and given correlation of 0.3 between the two securities and a risk free rate is 5%. Specify the equation for the capital market line.

3. Explain different types of option contracts. Discuss the various factors affecting prices of options.

4. Consider a three month call option on ABC Company's stock with an exercise price of Rs. 45. If ABC is currently selling at Rs. 50 and the risk-free interest rate is 5%, what will be the price of the option? Apply the Black-Scholes model to find call option value by assuming the standard deviation of the rate of return of ABC stock to be 0.4.

-2-

- 5. What do you mean by 'Portfolio Revision'? Discuss the Dollar weighted and Time weighted measures of return.
 - 6. X owns a portfolio of two securities. Based on a two factor model, the two securities have the following characteristics.

Security	Zero Factor	Factor 1 Sensitivity	Factor 2 Sensitivity	Non Factor risk o² ei	Proportion
Α	2%	.30	2.0	196	0.70
В	3%	.50	1.8	100	0.30

The factors are uncorrelated. Factor 1 has an expected value of 15% and a S.D. of 20%. Factor 2 has an expected value of 4% and a S.D. of 5%. Calculate the expected return and S.D. of X's portfolio.

- 7. Write a short note on the following:
 - a) SML and CML.
 - b) Futures and Forward contracts.

SECTION-B

Note: 1) Answer any two questions.

- 2) Each question carries fifteen marks.
- 3) Answer to each theory question should not exceed eight pages. (2×15=30)
- 8. Mr. A wants to purchase either portfolio C or D. He has collected annual rate of return data for the years 2001-2011 for both these portfolio, the market represented BSE index and the risk free rate. Determine the following for C and D portfolios.
 - a) Sharpe's Index performance
 - b) Treynor's performance measure

c) Jensen's performance index.

Years	Portfolio C (%)	Portfolio D (%)	Measure Market %	Risk Free Rate (%)
2001	23	12	24	9
2002	- 48	- 6	- 20	9
2003	- 20	- 8	- 31	12
2004	39	15	42	13
2005	33	22	29	11
2006	34	11	- 12	10
2007	29	6	11	10
2008	48	6	23	12
2009	47	7	37	15
2010	8	8	- 10	16
2011	55	33	25	20

9. Mr. X owns a portfolio with the following characteristics.

Securities	Expected return	Factor 1 Sensitivity	Factor 2 Sensitivity	Proportion
1	15%	0.9	0.2	.25
2	21%	3	1.5	.25
3	12%	1.8	0.7	.25
4	8%	2	3.2	.25

Assume that the returns are generated by a two factor model. Mr. X decides to create an arbitrage portfolio by increasing the holding of security 1 by 0.10.

- a) What must be the weights of the other three securities in X's Portfolio?
- b) What is the expected return on the arbitrage portfolio?

10. The following table gives information with regard to Ten securities.

Security Number	Mean Return	Beta	Unsystematic Risk σ² ei
1	15	1.5	50
2	17	1.2	40
3	12	1.1	25
4	18	- 2	40
5	10	1.2	30
6	14	1.2	20
7	15	1.3	40
8	11	1.0	20
9	9	.8	16
10	8	.75	10

The risk free rate has been 7% and the market risk (σ_m^2) has been 10%. From the above information you are required to determine the Sharpe's optimal portfolio and the cut off rate.