Entrance Examination			en	at	ics,	2015
Hall Ticket Number						

Time: 2 hours Max. Marks. 100 Part A: 25 marks

Part B: 75 marks

Instructions

- 1. Write your Hall Ticket Number on the OMR Answer Sheet given to you. Also write the Hall Ticket Number in the space provided above.
- 2. Answers are to be marked on the OMR answer sheet.
- 3. Please read the instructions carefully before marking your answers on the OMR answer sheet.
- 4. Hand over the OMR answer sheet at the end of the examination.
- 5. The question paper can be taken by the candidate at the end of the examination.
- 6. No additional sheets will be provided. Rough work can be done in the question paper itself/space provided at the end of the booklet.
- 7. Calculators are not allowed.
- 8. There are a total of 50 questions in Part A and Part B together.
- 9. There is a negative marking in Part A. Each correct answer carries 1 mark and each wrong answer carries -0.33 mark. Each question in Part A has only one correct option.
- 10. There is no negative marking in Part B. Each correct answer carries 3 marks. In Part B some questions have more than one correct option. All the correct options have to be marked in OMR sheet other wise zero marks will be credited.
- 11. The appropriate answer(s) should be colored with either a blue or a black ball point or a sketch pen. DO NOT USE A PENCIL.
- 12. \mathbb{R} denotes the set of real numbers, \mathbb{C} the set of complex numbers, \mathbb{Z} the set of integers and \mathbb{N} the set of natural numbers.
- 13. This book contains 9 pages including this page and excluding page for the rough work, Please check that your paper has all the pages.

Part-A

1.	Let A be an $m \times m$ statements is true?		be an $n \times n$	n matrix. Then wh	nich of the following
	(A) $\operatorname{rank}(AB) > r$ (B) $\operatorname{rank}(AB) \le r$ (C) $\operatorname{rank}(AB) \le r$ (D) $\operatorname{rank}(AB) > r$	$\min(\operatorname{rank}(A),\operatorname{rank}(A),\operatorname{rank}(A),\operatorname{rank}(A))$	nk(B)). nk(B)) – m		
2.	Let A be an $n \times n$ then the eigenvalue			s not an identity	matrix. If $A^2 = A$,
	(A) 1 and -1 .	(B) 0 and	1.	(C) -1 and 0 .	(D) 0 and n .
3.	Let A be a 7×5 r the dimension of the			st 5 linearly indep	pendent rows. Then
	(A) 0.	(B) 1.	(C) 2.	(D) at lea	ast 2.
4.	The dimension of t $W = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : \right.$				is equal to
	(A) 4.	(B) 3.	(C) 2.	(D) 1	
5.	If $ a-b = c-d $,	then		•	
	$(A) \ a = b + c - d.$			(B) a = b - c + a	d.
	(C) $a = b + c - d$	and $a = b - c +$	d.	(D) a = b + c - a	l or a = b - c + d.
6.	The set of all real that $x < y$ is equal		which there	e is some positive	real number y such
	$(A) \mathbb{R}.$		(B) the s	set of all negative	real numbers.
	(C) {0}.		(D) the	empty set.	
7.					³ . Then the value of
	the integral $\int \vec{r} \cdot \hat{n}$	dS evaluated o	n the sphere	e is equal to	
	(A) $\frac{4}{2}\pi\alpha^3$.	(B) $4\pi\alpha^2$.	(C)	$\frac{4}{2}\pi\alpha^2$.	(D) $4\pi\alpha^3$.

(A) $nr^{n-1}\vec{r}$. (B) $(n-1)r^{n-2}\vec{r}$. (C) $nr^{n-2}\vec{r}$. (D) $(n-1)r^n\vec{r}$.

8. If $\vec{r} = x\hat{i} + y\hat{j} + z\hat{k}$, $r = \sqrt{x^2 + y^2 + z^2}$ and $n \in \mathbb{N}$ then ∇r^n is equal to

	•						
9.			integral $\int_C \left(\frac{-}{x^2}\right)^2$ at the origin is e	•	$\frac{x}{+y^2}dy$) whe	C is the	circle with
	(A)	0.	(B) $\frac{\pi}{2}$.	(C) 2π .	(D)	$2\pi\alpha$.	
10.			e cube whose two = 0 is equal to	faces lie on	the planes $6x$	-3y+2z	+1 = 0 and
	(A)	27.	(B) $\frac{27}{343}$.	(C) $\frac{3}{7}$	(1	D) 10.	
11.	The $(x -$	number of co $2)^2 + y^2 + z^2$	mmon tangent pi = 1 passing thro	lanes to the ough the orig	spheres $(x + 2)$ in is equal to	$(2)^2 + y^2 + z^2$	2=1,
	(A)	0.	(B) 1.	(C) 2.	(D) n	one of these).
12.		be an arbitr by $y(1-cx) = 0$	ary nonzero cons $= 1 + cx is$	tant. Then t	he orthogonal	family of c	curves to the
	` /	$3y - y^3 + 3x$ $3y - y^3 - 3x$			$3y + y^3 - 3x^2 = 3y + y^3 + 3x^2 = 3x + 3x^2 = 3x + 3x^2 = 3x + 3x^2 = 3x + 3x$		
13.	Cons	sider the follo	wing two statem	ents.			
	S_1 :	If (a_n) is any	real sequence, t	hen $\left(\frac{a_n}{1+ a_n }\right)$	$\left(\frac{1}{n}\right)$ has a con	vergent sub	sequence.
	S_2 :	If every subse	equence of (a_n) has	as a converge	ent subsequenc	ce, then (a_n)	is bounded.
	Whi	ch of the follo	owing statements	is true?			
	(A)	Both S_1 and	S_2 are true.	(B)	Both S_1 and S_2	S_2 are false.	
	(C)	S_1 is false by	at S_2 is true.	(D)	S_1 is true but	S_2 is false.	
14.	The	largest interv	$\operatorname{val} I$ such that th	e series $\sum_{n=1}^{\infty}$	$\frac{x^n}{\sqrt{n}}$ converges	whenever x	$i \in I$ is equal
	to						D) (1 1)
		[-1, 1].	(B) $[-1, 1]$				D) $(-1,1)$.
15.	Let	$\sum a_n$ be a co	nvergent series. l	Let $b_n = a_{n+1}$	$a_1 - a_n$ for all	$n \in \mathbb{N}$. The	n
			also be converge			0.	4
		(B) $\sum b_n$ need not be convergent but $(b_n) \to 0$ as $n \to \infty$. (C) $\sum b_n$ is convergent but (b_n) need not tend to zero as $n \to \infty$.					
	(C)	$\sum b_n$ is conv	vergent but (b_n) 1	need not ten	a to zero as n	$\rightarrow \infty$.	

(D) none of the above statements is true.

16.	. Consider the real sequences (a_n) and following statements is true?	(b_n) such that \sum	$a_n b_n$ converges. Which of the			
	 (A) If ∑ a_n converges, then (b_n) is bounded. (B) If ∑ b_n converges, then (a_n) is bounded. (C) If (a_n) is bounded, then (b_n) converges. (D) If (a_n) is unbounded, then (b_n) bounded. 					
17.	17. If $f: \mathbb{R} \to \mathbb{R}$ and $\lim_{h \to 0} (f(x+h) - f(x-h)) = 0$ for all $x \in \mathbb{R}$, then					
	 (A) f need not be continuous. (B) f is continuous but not different (C) f is differentiable but f' need not (D) f is differentiable and f' is continuous. 	ot be continuous.				
18.	. If $f:[0,1]\to\mathbb{R}$ is continuous and $f(1)$	1) < f(0), then				
	(A) $f([0,1]) \subseteq [f(1), f(0)].$ (C) $f([0,1]) = [f(1), f(0)].$					
19.	Consider $f: [-1,2] \to \mathbb{R}$ defined by f . Then the maximum value of $f(x)$ is e		if $-1 \le x \le 0$ $x^2 + 2x$, if $0 < x \le 2$.			
	(A) 0. (B) 2.	(C) 4.	(D) 10.			
20.	. The function e^x from $\mathbb R$ to $\mathbb R$ is					
	(A) both one-one and onto.(C) onto but not one-one.	(B) one-one but (D) neither one				
21.	. The number of elements of order 6 in	a cyclic group of	order 36 is equal to			
	(A) 2. (B) 3.	(C) 4.	(D) 6.			
22.	. Consider the following two statement	S.				
	S_1 : There cannot exist an infinite gr S_2 : In a group G if $a \in G$, $a^7 = e$ an	-				
	Which of the following statements is	true?				
	 (A) Both S₁ and S₂ are true. (B) Both S₁ and S₂ are false. (C) S₁ is false but S₂ is true. (D) S₁ is true but S₂ is false. 					

23	. Let R be a commutative ring t be a unit. Then	with unity and $1 \neq 0$. Let a be a nilpotent element, x
	(A) $1 + a$ is not a unit.	(B) $a - x$ is a nilpotent element.
	(C) $x + a$ is a unit.	(D) none of the above statements is true.
24	. Let R be a commutative ring	with unity. Consider the following two statements.
		mplies $a = 0$ then R does not have nonzero nilpotent
		s of R with $A + B = R$ then $A \cap B = AB$.
	Then which of the following st	
	(A) Both S_1 and S_2 are true.	(D) D 11 C 1 C and folio
	(C) S_1 is false but S_2 is true.	(m) a + 1 + C := folso
2	• •	ace 8 identical balls in 3 different boxes so that no box
	(A) 8. (B) 28.	(C) 36. (D) 21.
	(11) 0.	Part-B
2	to	(1, -1, 6) onto the plane $3x + 2y - 7z - 51 = 0$ is equal
		(C) (18, 2, 1). (D) none of these.
2	7. The projection of the straight plane is	t line $x - y - z = 0$ and $2x + 3y + z = 5$ onto the yz -
	(A) $5y = -3z + 5$ and $x = 0$	(B) $y = 3z + 5$ and $x = 0$.
	(C) $y = z + 5$ and $x = 0$.	(D) $y = -z + 5$ and $x = 0$.
2		dii $\sqrt{2}$ such that the area of each circle of intersection nes is π is equal to
	(A) 1. (B) 3.	(C) 4. (D) 8.
	29. If all blind horses are white t	hen it follows that
•		(B) no brown horse is blind.
	(A) no blind horse is black.(C) all white horses are bling	(n) 11 I blind and white

30. The set of all real roots of the polynomial $P(x) = x^4 - x$ is

(A) $\{0,1\}$.

- (B) the set of roots of $(x^2 x)$.
- (C) a set having four elements.
- (D) an infinite set.

31. Let $f, g : \mathbb{R} \to \mathbb{R}$ be polynomials. Then which of the following are <u>false</u>?

- (A) If f(x) = g(x) for all $x \in [0, 1]$ then f = g.
- (B) If $f\left(\frac{1}{n}\right) = g\left(\frac{1}{n}\right)$ for all $n \in \mathbb{N}$ then f = g.
- (C) If $f(x) \leq g(x)$ for all $x \in \mathbb{R}$ then $degree(f) \leq degree(g)$.
- (D) If $\{x \in \mathbb{R} : f(x) = 0\} = \{x \in \mathbb{R} : g(x) = 0\}$ then f = g.

32. If the graph of the function y = f(x) is symmetrical about the line x = a, then

(A) f(x) = f(-x).

(B) f(x+a) = f(-x-a).

(C) f(x+a) = f(a-x).

(D) f(2a - x) = f(x).

33. Consider the following two statements.

 S_1 : There exists a linear transformation $T: \mathbb{R}^5 \to \mathbb{R}^2$ such that T is onto and $\operatorname{Ker}(T) = \{(x_1, x_2, x_3, x_4, x_5) : x_1 + x_2 + x_3 = 0\}.$

 S_2 : For every linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ there exists $\mu \in \mathbb{R}$ such that $T - \mu I$ is invertible.

Which of the following statements are true?

- (A) Both S_1 and S_2 are true.
- (B) Both S_1 and S_2 are false.
- (C) S_1 is false but S_2 is true.
- (D) S_1 is true but S_2 is false.

34. The set $S = \{-1, 1\}$ is the set of eigenvalues of the square matrix A, if

- (A) $A \pm I \neq 0$, A is a real, orthogonal and symmetric matrix.
- (B) $A \pm I \neq 0$, A is a symmetric matrix.
- (C) $A \pm I \neq 0$, $A^2 = I$.
- (D) $A \pm I \neq 0$, A is a Hermitian matrix.

35. If $A \neq 0$ is a 2×2 real matrix and suppose $A^2 \vec{v} = -\vec{v}$ for all vectors $\vec{v} \in \mathbb{R}^2$, then

- (A) -1 is an eigenvalue of A.
- (B) the characteristic polynomial of A is $\lambda^2 + 1$.
- (C) the map from $\mathbb{R}^2 \to \mathbb{R}^2$ given by $\vec{v} \mapsto A\vec{v}$ is surjective.
- (D) $\det A = 1$.

- 36. Consider a linear system of equations $A\vec{x} = \vec{b}$ where A is a 3 × 3 matrix and $\vec{b} \neq 0$. Suppose the rank of the matrix of coefficients $A = (a_{ij})$ is equal to 2 then
 - (A) there definitely exists a solution to the system of equations.
 - (B) there exists a non-zero column vector \vec{v} in \mathbb{R}^3 such that $A\vec{v} = \vec{0}$.
 - (C) if there exists a solution to the system of equations $A\vec{x} = \vec{b}$ then at least one equation is a linear combination of the other two equations.
 - (D) $\det A = 0$.
- 37. Which of the following sets are closed and bounded?
 - (A) $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 3\}.$ (B) $\{(x,y) \in \mathbb{R}^2 : x + y = 3\}.$
 - (C) $\{(x, y) \in \mathbb{R}^2 : |x| + |y| < 3\}.$
- (D) $\{(x,y) \in \mathbb{R}^2 : \max\{|x|,|y|\} < 3\}.$
- 38. Let $\ell \in \mathbb{R}$, and (a_n) be a real sequence. Then which of the following conditions is equivalent to $(a_n) \to \ell$ as $n \to \infty$?
 - (A) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ such that } |a_n \ell| < 2\epsilon \text{ whenever } n \geq n_0.$
 - (B) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ such that } |a_n \ell| < \epsilon \text{ whenever } n \geq 2n_0$
 - (C) $\forall \epsilon > 0, \exists n_0 \in 3\mathbb{N} \text{ such that } |a_n a_m| < 2\epsilon \text{ whenever } m, n \geq n_0.$
 - (D) $\forall \epsilon > 0, \exists n_0 \in \mathbb{N} \text{ such that } |a_n a_m| < 2\epsilon \text{ whenever } m, n \geq n_0.$
- 39. Which of the following series converge?

(A)
$$\sum_{n=1}^{\infty} \left(\frac{\log n}{n^{1+2\epsilon}} \right).$$

(B)
$$\sum_{n=1}^{\infty} \left(\frac{(\log n)^2}{n^{1+2\epsilon}} \right).$$

(C)
$$\sum_{n=1}^{\infty} \left(\frac{n^2 + 1}{n^3 + n} \right).$$

(D)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^n$$
.

40. Let
$$f(x) = \begin{cases} x^{3/2}(1-x)^{5/4}, & x \in (0,1), \\ 0, & x \in \mathbb{R} \setminus (0,1). \end{cases}$$
 Then

- (A) f is discontinuous at 0 and 1.
- (B) f is continuous but not differentiable at 0 and 1.
- (C) f is differentiable at 0 and 1 but f' is not continuous at 0 and 1.
- (D) none of the above.
- 41. The value of the integral $\int_0^z (x [x^2]) dx$ is equal to

- (A) $\sqrt{2} + \sqrt{3} + 3$. (B) $\sqrt{2} + \sqrt{3} 3$. (C) $\sqrt{2} \sqrt{3} + 3$. (D) $\sqrt{2} \sqrt{3} 3$.

- 42. Let f and g be real valued functions on [0,1] which are Riemann integrable. Let $f(x) \leq g(x)$ for all $x \in [0,1]$ and $f\left(\frac{1}{2}\right) < g\left(\frac{1}{2}\right)$. The inequality $\int f dx < \int g dx$ holds if
 - (A) f and g are continuous in [0, 1].
 - (B) f is continuous.
 - (C) g is continuous.
 - (D) f and g are continuous in a neighbourhood containing $\frac{1}{2}$
- 43. The general solution of y''' 4y'' + y' = 0 is
 - (A) $c_1 \sinh^2 x + c_2 \cosh^2 x + c_3$.
- (B) $c_1 \sinh 2x + c_2 \cosh 2x + c_3$.
- (C) $c_1 \sin 2x + c_2 \cos 2x + c_3$.
- (D) $c_1 e^{2x} + c_2 e^{-2x} + c_3$.
- 44. Which of the following are solutions of the differential equation $yy'' (y')^2 + 1 = 0$?
 - (A) x.
 - (B) $\sin(x+c)$ where c is an arbitrary constant.
 - (C) sinh(x+c) where c is an arbitrary constant.
 - (D) none of the above.
- 45. Which of the following statements are true?
 - (A) In a cyclic group of order n, if m divides n, then there exists a unique subgroup of order m.
 - (B) A cyclic group of order n will have (n-1) elements of order n.
 - (C) In a cyclic group of order 24 there is a unique element of order 2.
 - (D) In the group $(\mathbb{Z}_{12}, +)$ of integers modulo 12 the order of $\overline{5}$ is 12.
- 46. Let G be a finite group with no nontrivial proper subgroups. Then which of the following statements are true?
 - (A) G is cyclic.

(B) G is abelian.

(C) G is of prime order.

- (D) G is non-abelian.
- 47. The equation $5X = 7 \pmod{12}$ has
 - (A) a unique solution in \mathbb{Z} .
 - (B) a unique solution in the set $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$.
 - (C) a unique solution in the set $\{n, n+1, n+2, n+3, n+4, n+5, n+6, n+7, n+8, n+9, n+10, n+11\}$.
 - (D) no solution in \mathbb{Z} .

- 48. Which of the following maps are ring homomorphisms?
 - (A) $f: \mathbb{Z}_4 \to \mathbb{Z}_{10}, f(x) = 5x$.
 - (B) $f: \mathbb{Z}_5 \to \mathbb{Z}_{10}, f(x) = 5x$.
 - (C) $f: \mathbb{Z}_4 \to \mathbb{Z}_{12}, f(x) = 3x$.
 - (D) $f: \mathbb{Z}_4 \to R$, f(x) = xe where R is a ring with unity e.
- 49. Let R be a finite commutative ring with no zero divisors then
 - (A) R is a field.

- (B) R has a unity.
- (C) characteristic of R is a prime number.
- (D) none of the above.
- 50. Each question in a text has 4 options of which only one is correct. Ashok does not know which of the options are correct or wrong in 3 questions. He decides to select randomly the options for these 3 questions independently. The probability that he will choose at least 2 correctly is
 - (A) more than 0.25.

- (B) in the interval (0.2, 0.25].
- (C) in the interval (1/6, 0.2].
- (D) less than 1/6.