

PHYSICS - 5

through it, heat is eith	er evolved or absor	bed. The effect is called	
A. Peltier effect	B. Seebeck effect	C. Thompson effect	D. Joule effect
2. A storage battery is connected to the posit	_	a d.c. supply which term	ninal of the battery be
A. positive	2,0 5140 01 010 1110	B. negative	AC
C. both positive and n	egative	D. first negative and after	r the lapse of 5 minutes
1		positive	
3. The force between	two parallel wires o	carrying currents in the sa	me direction is a
A. force of attraction		B. force of repulsion	A P
C. no resultant force b	between the wires	D. resultant force actiflow of wires	ing perpendicular to the
		now of wifes	,
4. The motion of an el	lectric charge produ	ices	
A. only an electric fie	~ -	B. only a magnetic fie	eld
C. both magnetic and		D. none of the above	
•		G	
5. An ammeter is com	nected in series with	h a 2V circuit containing	a 2V battery when the
switch is closed, the a	mmeter shows high	deflection and comes to	zero. The circuit may
contain a			
A. resistance of 20Ω	B. fuse	C. diode	D. triode
6. Ferromagnetic subs	stances have		
		lity B. low permeability b	out high susceptibility
C. high permeability a	and low susceptibil	ity D. none of these	
7. The permeability of	f the paramagnetic	substance is	
A. very large	B. very small	C. negative	D. small but more than 1
	subjected to a smal	1 field H , the intensity of	magnetisation is
proportional to		2	
A. \sqrt{H}	B. <i>H</i>	$C. H^2$	D. $1/\sqrt{H}$
9. In a capacitance cir	cuit the resistance i	S	
Α. ω <i>C</i>	B. 1/ω <i>C</i>	C. $1/\sqrt{\omega}$ C	$D \sqrt{\omega} \times C$
10. In electromagnetic	c induction, the ind	uced e.m.f. is independent	t of

1. When different parts of a metal are kept at different temperature and current is passed

A. change of flux		B. time			
C. number of lines of force		D. resistance of the cells			
11. A coil of area <i>A</i> is then change in the flux		a magnetic field <i>B</i> . If c	coil is rotated by 180° ,		
A. BA	B. zero	C. 2 <i>BA</i>	D. 3 <i>BA</i>		
12. The displacement its plates	current flows in the di	electric of a capacitor v	when the P.D. across		
A. is increasing with t	ime	B. is not decreasing w	rith time		
C. has assured a const		D. becomes zero	. 6		
13. Electromagnetic w	aves		4		
A. are longitudinal wa		B. travel in free space	at the speed of light		
C. are produced by ch	arges moving with	D. travel with the sam	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
uniform velocity		D. traver with the same	le speed in an media		
14. The frequency of	visible light is of the or	rder of			
A. 10 ⁸ Hz	B. 10 ¹⁸ Hz	C. 10 ¹⁵ Hz	D. 10^{12} Hz		
	of focal length 15cm for ject from the mirror is	_	tance of 40 cm from it.		
A. 10 cm	B. 20 cm	C. 24 cm	D. 30 cm		
	de conveniently short bair of binoculars, the r		angled isosceles prism		
A. 1	B. 2	C. 4	D. 5		
17. A ray incident on angle of incidence is	a 60° prism of refractiv	ve index √ 2 suffers mi	nimum deviation. The		
A. 0°	B. 45°	C. 60°	D. 75°		
D. 10	ns having velocities in	the ratio of 1:2 are su	ibjected separately to		
		C. 1 : 4	D. 2:1		
A. 4:1	B. 1:2	C. 1 : 4	D. 2 : 1		
19. The ray used for d	etermining the crystal	structure of solid is			
A. α -ray	B. β -ray	C. γ-ray	D. X-ray		
	•	ray are used because ne inter-atomic spacing	;		

•	rays is of order of nucle	ear size				
D. X-rays are cohere 21. An ideal gas at 2'		abatically to 8/27 of its	original volume (TV ^{γ-1}			
= Constant and $\gamma = 5/3$). The rise in temperature will be						
A. 475°C	B. 402°C	C. 275°C	D. 102°C			
<u> -</u>	vo charges separated by	dium of constant k, the y a distance: B. remains unchanged D. increase k ⁻¹ times	A			
23. Three identical m	netal balls, each of radiu	is r are placed touching	g each other on a			
horizontal surface su		riangle is formed when	4 10			
A. horizontal surface	;	B. centre of one of th	ne balls			
C. line joining centre	es of any two balls	D. point of intersection	on of the medians			
take a brass rod of le		length l ₂ at 0°C, the di	d α_2 respectively. If we fference in their lengths			
A. $\alpha_1 l_1 = \alpha_2 l_2$		B. $\alpha_1 l_2 = \alpha_2 l_2$				
C. $\alpha_1^2 l_2 = \alpha_2^2 l_2$		D. $\alpha_1 l_2^2 = \alpha_2 l_1^2$				
25 If 1 g of steam is	mixed with 1 g of ice	the resultant temperatu	ire of the mixture is			
A. 270°C	B. 230°C	C. 100°C	D. 50°C			
,						
26. Which of the foll semiconductor?	owing when added as a	an impurity into the sili	icon produces n-type			
A. O	B. Al	C. B	D. Mg			
	ravity at the earth's sur	gular speed on its own face is g. The cube of r				
A. R^2g/ω	B. $R^2\omega^2/g$	C. Rg/ω^2	D. R^2g/ω^2			
respectively. Their sp		re moving in circles of the makes a complete circle				
A. $m_1 : m_2$	<i>y</i>	B. $r_1 : r_2$				
C. 1:1		D. $m_1 m_2 : r_1 r_2$				
This autials is the even	manticat DagradOuers see	. Λονιμουμερα ί	io otriotly probibited			

	nertia of a disc of mass amference of the disc ar		
A. $(3/2)$ MR ²	innerence of the disc at	B. (2/3) MR ²	(C) 13
C. $(5/4) \text{ MR}^2$		D. (4/5) MR ²	
-	ity of a sphere of mass of the earth and $R_{\rm e} = Ra$	_ ,	niversal gravitational
A. $\sqrt{(GM/R_e)}$		B. $\sqrt{(2GM/R_e)}$	
C. $\sqrt{(2GMm/R_e)}$		D. $\sqrt{[(2GM + R_e)/R_e)]}$	• 20
31. If a force on a roc combustion of the fue	cket moving with a velo	ocity of 300 m/s is 210	N, then the rate of
A. 0.7 kg/s	B. 1.4 kg/s	C. 0.07 kg/s	D. 10.7 kg/s
32. Two waves of len	igths 50 cm 51 cm prod	luced 12 beats per sec.	The velocity of sound
A. 306 m/s	B. 331 m/s	C. 340 m/s	D. 360 m/s
	to reach the exactly opped of 0.5 m/s at an angular the stream is		
A. 1 m/s	B. 0.5 m/s	C. 0.25 m/s	D. 0.433 m/s
34. If a unit vector is	represented by 0.5i + 0	0.8j + ck, then the value	e of 'c' is
A. 1	B. √0.11	C. √0.01	D. √0.39
35. The dimensional	formula of magnetci flu	ıx is	
A. $[ML^2T^{-2}A^{-1}]$		B. $[ML^0T^{-2}A^{-2}]$	
C. $[M^0L^{-2}T^{-2}A^{-2}]$	/	D. $[ML^2T^{-1}A^3]$	
36. As the intensity o	f incident light increase	es,	
A. photoelectric curre	ent increases	B. photoelectric curre	ent decreases
C. kinetic energy of e increases	emitted photoelectrons	D. kinetic energy of edecreases	emitted photoelectrons
37. The photoelectric this surface is	function for a metal su	urface is 4.125 eV. The	cut off wavelength for
A. 4125 Å	B. 2062.5 Å	C. 3000 Å	D. 6000 Å

38. If refractive index deviation of the prism		ateral prism is $\sqrt{3}$, then	the angle of minimum
A. 60°	B. 90°	C. 180°	D. 360°
39. Colours appear on	a thin soap film and c	on soap bubbles due to	the phenomenon of
A. refraction	B. dispersion	C. interference	D. diffraction
*	ens is made of refractivem, then the focal lengt	e index 1.6. If the radion	us of curvature of the
A. 50 cm	B. 100 cm	C. 200 cm	D. 400 cm
41. After one α and tv	•		470
A. mass number reduced	•	B. mass number reduced	
C. mass number reduc	ces by 6	D. atomic number ren	nains unchanged
the reaction will be		5.8 min, then the value	
A. 3.1 X 10 ⁻³	B. 3.1 X 10 ⁻⁴	C. 3.1 X 10 ⁻⁶	D. 3.1 X 10 ⁻⁹
43. Magnetic field int current of 2 A is	ensity in the centre of	coil of 50 turns, radius	0.5 m and carrying a
A. 0.5 X 10 ⁻⁵ T	B. 1.25 X 10 ⁻⁴ T	C. 3 X 10 ⁻⁵ T	D. 4 X 10 ⁻⁵ T
44. Wavelength of lig	ht of frequency 100 H	z is	
A. $2 \times 10^6 \text{ m}$	B. 3 X 10 ⁶ m	C. $4 \times 10^6 \text{ m}$	D. 5 X 10 ⁶ m
45. The internal resist	ance of a cell of e.m.f.	2 V is 0.1Ω . It is con-	nected to a resistance
of 3.9Ω . The voltage	across the cell will be		
A. 0.5 V	B. 1.5 V	C. 1.95 V	D. 2 V
46. A bar magnet of n	nagnetic moment M is	placed in a magnetic f	ield of induction B.
The torque exerted on	it is		
A. M.B	B M.B	C. M X B	D B X M
47. If a diamagnetic s	ubstance is brought ne	ar north or south pole	of a bar magnet, it is
A. attracted by the po	les		
B. repelled by the pol-	es		
C. repelled by north p	ole and attracted by th	e south pole	
D. attracted by north 1	pole and repelled by th	e south pole	
48. If a long hollow c	opper pipe carries a cu	rrent, the magnetic fiel	d produced will be

		B. outside the pipe only			
C. neither inside nor o	outside the pipe	D. both inside and outside the pipe			
	diameter 0.5 mm carry or carrying the same cur	_	- ·		
A. twice the earlier va	llue	B. one-half the earlier	value		
C. one-quarter the ear	lier value	D. same as the earlier	value		
50. Magnetic field due centre of the coil is	e to 2A current flowing	g through a circular of 1	radius 5 cm at the		
A. 20 T	B. 30 T	C. 40 T	D. 50 T		
	edom of a triatomic gas		A		
A. 1	B. 2	C. 6	D. 8		
	s the radiation of wave				
A. less than 3×10^{-7} r		B. equal to 3 X 10 ⁻⁷ m			
C. more than 3×10^{-7}	m	D. none of the above			
53. Two bodies with k momentum. The ratio	xinetic energies in the r of their masses is	ratio of 4:1 are moving	g with equal linear		
A. 1:2	B. 1:1	C. 4:1	D. 1:4		
	the balancing length from the balancing length				
A. 0.8Ω	Β. 0.5 Ω	C. 1.4 Ω	D. 0.25 Ω		
A					
55. A wire of resistant is	ce 10Ω is elongated by	y 10%. The resistance of	of the elongated wire		
Α. 11 Ω	Β. 11.1 Ω	C. 12.1 Ω	D. 13.1 Ω		
- 1, 7	ondenser with oil between the coil is removed.	-			
$A. \sqrt{2} C$	B. 2 C	C. $C/\sqrt{2}$	D. C/2		
57. In bringing an electronic system	ctron towards another e	electron, electrostatic p	otential energy of the		
A. decreases	B. increases	C. becomes zero	D. remains same		
58. The time period of	f a simple pendulum is	2 s. If the length is inc	reases by 4 times, then		

its period becomes			
A. 16 s	B. 12 s	C. 8 s	D. 4 s
59. A p-n junction did	ode can be used as		
A. amplifier	B. regulator	C. condenser	D. rectifier
60 In forward bias th	he width of potential ba	orrier in a n-n junction	diode
A. increases	ne width of potential of	B. decreases	diode
C. remains constant		D. none of the above	
	-centred packing. If dis		rest atoms is 3.7 Å, the
lattice parameter is	control pacining. If the		20,711, 1110
A. 3.3 Å	B. 3.9 Å	C. 4.3 Å	D. 4.8 Å
	2.0011	0	
62. Depletion layer co	onsists of	4	
A. electrons	B. immobile	C. holes only	D. both 1) and 3)
			, ,
63. Alpha particles ar	re	AUY	
A. protons		B. positrons	
C. neutrally charged		D. ionised helium ator	ms
		C	
64. Knowledge connecalled	ected with non-living b	odies comes under the	branch of science is
A. life sciences	0.5	B. biological sciences	
C. physical sciences		D. none of the above	
c. physical sciences		2. Hone of the decre	
65. The quantity used	as the standard of mea	surement is called the	
A. dimension	B. unit	C. velocity	D. none
,			
66. The units adopted	for measuring fundam	ental quantities are cal	led the
A. fundamental units		C. derived units	D. none of the above
	2		2 mone of the wood
67. Let $f(x)$ and $F(x)$	be two functions of x s	uch that differential co	efficient of F(x) with
	hen integral part of $f(x)$		()
A. F'(x)		B. F(x)	
$C. \int F(x) dx$		D. none of the above	
	y from rest and the total		
-	distance covered by it is	in the first three second	is of its motion. The
stone remains in the a A. 5 seconds	111 101	B. 7 seconds	
C. 3 seconds		D. none of the above	
C. J BUUTIUB		D. HOHE OF the above	

69. A body is projected horizontally with a velocity of 4 m/s. The velocity of the body after 0.7s is nearly (take $g = 10 \text{m/s}^2$)					
A. 9 m/s	B. 7 m/s				
C. 8 m/s	D. none of the above				
	s. Holle of the doore				
70. The acceleration of a particle, starting from relation $a = kt + c$. The velocity v is the particle.	cle at a time t will be				
A. $(1/2)kt^2 + ct$	B. $kt^2 + ct$				
C. $kt^2 + (3/2)ct$	D. none of the above				
	the directions of its velocity and accelerations				
A. inclined to each other at an angle of 30°	B. parallel to each other				
C. perpendicular to each other	D. none of the above				
72. A man is pulling on a rope attached to a tension in the rope will be the same at all po					
A. if either the rope is not accelerated or is					
massless	B. if and only if the rope is massless				
C. if and only if the rope is not accelerated	D. none of the above				
73. A gun is aimed horizontally at a target in	line with its barrel. The target is released at				
the very instant the gun is fired. The bullet w					
A. pass above the target	B. pass below the target				
C. hit the target	D. none of the above				
74. A container filled with water and having	a wooden block floating in it is allowed to				
fall freely under gravity. During the fall, the					
A. zero	B. equal to the weight of the block in air				
C. equal to the loss of water of the block in	D. none of the above				
water	D. Holle of the above				
75. Two bodies of masses m and 4m are more	ving with equal kinetic energy. The ratio of				
their linear momenta is					
A. 1:2 B. 2:1	C. 3 : 2 D. none				
76. A shell fired from a gun at an angle to th centre of the mass of the shell fragments wil	-				
A. along the same parabolic path along whic					
B. vertically down	C				
C. horizontally					
D. none of the above					

77. The centre of mass of a system of two particles is

A. on the line joining them at a point whose distance from each particle is proportional to the square of the mass of that particle

B. on the line joining them at a point whose distance from each particle is inversely proportional to the square of the mass of that particle

C. both 1) and 2)

D. none of the above

78. A bullet hits and gets embedded in a solid block resting on a frictionless surface. In this process,

A. both momentum and kinetic energy are conserved

B. momentum is conserved

C. kinetic energy is conserved

D. none of the above

79. The swing of a spinning cricket ball in the air can be explained on the basis of

A. sudden change in wind direction

B. buoyancy of air

C. Bernoulli's theorem

D. turbulence caused by wind

80. Ohm's law deals with the relation between

A. capacity and potential

B. current and potential difference

C. charge and capacity

D. none of the above

81. For accurate measurements, the resistance of a voltmeter should be A. as small as possible

B. as large as possible

C. infinity

D. none of the above

82. A big dry cell A and a small dry cell B have the same e.m.f. The internal resistance of

Α

A. is less than that of B

B. is greater than that of B

C. is equal to that of B

D. none of the above

83. E.m.f. of a cell is

A. scalar quantity C. both 1) and 2)

B. a vector quantity

D. none of the above

84. In liquids, the flow of electricity is through

A. neutral medium

B. positive ions

C. negative ions

D. both 2) and 3)

85. A moving coil type of galvanometer is based upon the principle that

A. a wire carrying current produces magnetic field

B. a wire carrying a current experiences a torque in magnetic field

C. it has ordinary magnetic field D. none of the above 86. Specific resistance of a conductor depends on A. nature of the conductor B. length and diameter of the conductor C. volume of the conductor D. none of the above 87. Iron is ferromagnetic B. below 770°C A. at any temperature C. above 770° D. at normal temperature 88. In dia, para and ferromagnetism, the universal property of all substances is A. diamagnetism B. magnetism C. paramagnetism D. ferromagnetism 89. Earth's magnetic field always has a horizontal component except at A. an altitude of 60°C B. a latitude of 45°C C. magnetic pole D. none of the above 90. Magnetic moment is A. a universal constant B. a scalar quantity D. none of the above C. a vector quantity 91. Two magnetic lines of force A. start from south pole B. can't intersect C. intersect at many points D. none of the above 92. Soft iron has very A. high retentivity B. low retentivity C. both 1) and 2) D. none of the above 93. The value of permeability of paramagnetic substance is $C_{.} = 1$ A. > 1 $B_{.} < 1$ D. none 94. Earth's magnetic field always has a horizontal component except at the A. magnetic poles B. equator D. none of the above C. geographical poles 95. Inside a hollow spherical conductor, A. electric field is zero B. electric field is constant C. electric field changes with distance from the centre of the sphere D. none of the above

96. Dielectric strength of the medium

A. increases with moisture content
C. increases with rise in temperature
D. is same for all insulating materials

97. Midway between two equal and similar charges, a third equal and similar charge is placed, then this third charge will

A. remain in equilibrium

B. be in unstable equilibrium

C. not be in equilibrium D. none of the above

98. Which one of the following devices is used for measuring very high temperature?

A. Pyrometer B. Gas thermometer

C. Mercury thermometer D. none of these

99. The absorptive power of a perfectly black body is

A. 1 B. 0.5 C. 0.25 D. zero

100. 1080 g of ice at 0°C is mixed with 1080 g of water at 80°C. The final temperature of the mixture will be

A. 40°C B. 60°C C. 0°C D. 90°C

Solutions:

1	2	3	4	5	6	7	8	9	10
C	A	C	В	Α	D	D	В	В	C
11	12	13	14	15	16	17	18	19	20
C	A	В	C	Α	C	В	D	D	A
21	22	23	24	25	26	27	28	29	30
В	A	D	A	C	A	D	C	C	В
31	32	33	34	35	36	37	38	39	40
A	A	C	В	Α	A	C	Α	C	В
41	42	43	44	45	46	47	48	49	50
C	В	В	В	C	C	В	В	D	C
51	52	53	54	55	56	57	58	59	60
C	A	D	D	C	D	В	D	D	В
61	62	63	64	65	66	67	68	69	70
C	В	D	C	В	A	В	A	C	A
71	72	73	74	75	76	77	78	79	80

C	A	\mathbf{C}	A	A	A	В	A	C	В
81	82	83	84	85	86	87	88	89	90
В	A	Α	D	В	A	В	A	C	C
91	92	93	94	95	96	97	98	99	100
В	A	A	A	Α	В	A	A	A	C