[3762]-203

S.E. (Comp.) (First Semester) EXAMINATION, 2010 DIGITAL ELECTRONICS AND LOGIC DESIGN

(2008 COURSE)

Time: Three Hours

Maximum Marks:

- N.B. :-(i) Answer Q. No. 1 or 2, Q. No. 3 or 4, Q. No. 5 or 6 from Section I and answer Q No. 7 or 8, Q. No. 9 or 10, Q. No. 11 or 12 from Section II.
 - Answers to the two Sections should be written in separate (ii) answer-books.
 - Neat diagrams must be drawn wherever necessary. (iii)
 - Figures to the right indicate ful marks. (iv)
 - Assume suitable data if necessary. (v)

SECTION I

- Convert the following octal numbers into its equivalent decimal 1. (a) [6] and hex. :
 - (i) (555)_{octal}
 - (777) (ii)
 - Solve the following equations using corresponding minimization techniques, also draw MSI design for the minimized output equation:

$$Z = f (A, B, C, D) = \pi (2, 7, 8, 10, 11, 13, 15)$$

(ii) $Z = f(A, B, C, D) = \sum (0, 3, 4, 9, 10, 12, 14).[12]$

- Express the following numbers in binary, show the step-by-step (a) equations and calculations ? (110 . 110) Decimal (i)(234 . 234) Decimal (ii)[6]Convert 4-bit grey code into corresponding BCO code. Show (b) truth table and MSI circuit. [6] Perform the following hex-decimal substruction and show the (c) answer in hex-decimal only: [6] (ABC)_{Hex} - (CBA)_{Hex} (i) $(759)_{Hex} - (957)_{Hex}$ (ii)With the help of Quine-McClusky technique determine the PI, 3. (a) EPI for the following equation: [10] $Z = f (A, B, C, D) = \sum (0, 3, 8, 9, 10, 12, 15)$ Explain standard TTL characteristics in brief. (b) [6] Orstandard TTL NAND gate with totem pole. Explain operation of transistor (ON/OFF) with suitable input conditions
- (b) What is logic family? Explain types of logic families in detail. [6]

[10]

nd truth table.

5. (a)	Draw and explain 4-bit BCD adder using IC 7483. Expla	in any
	two BCD addition operations.	[10]
(b)	Explain the working of cascaded mode magnitude comp	parator
	using IC 7485 ?	[8]
main on	Or .	
6. (a)	Explain decoder (1:8) as a full adder and full subtractor	Show
	your design.	[8]
(b)	Design 14: 1 mux using 4: 1 mux (with enable inputs). E	xplain
1	the truth table of your circuit in short.	[8]
100	SECTION II	
7. (a)	Design SR flip-flop using JK flip-flop.	[4]
(b)	Explain with a neat diagram working of parallel in seri	al out
The state of	4-bit shift register. Braw necessary timing diagram.	[6]
(c)	Give any four applications of shift registers. Also ex	xplain
	4-bit Johnson's counter.	[8]
	Or .	
3. (a)	Explain with a neat diagram working of 3-bit up-down synchr	onous
	counter. Draw necessary timing diagram.	[10]
(b) •	Resign a sequence generator with a sequence 1101011.	[8]
3762]-203	3	P.T.O.

9.	(a)	With the help of an ASM chart design a modulo 6 up	-down
i la		counter.	[10]
	(b)	Write VHDL code for 4-bit full adder.	[6]
		Or	5
10.	(a)	Describe architectural blocks of FPCaA. Briefly explain	nction
77.		of each.	[10]
	(b)	Write VHDL code for 4 : 1 MUX.	[6]
5.18	17		
11.	(a)	Design using PLD a 3 : 8 decoder.	[8]
18	(b)	Draw a generalised block diagram of nicroprocessor.	Briefly
		explain function of each block.	[8]
		Or nettant (18 min-te-	
12.	(a)	Using PLDs design a 4-bt Gray code counter.	[8]
	(b)	Explain, what is a bus ? Give different types of bus us	sed by
		a microprocessor.	[4]
10.3	(c)	Explain the function of :	
		(1) ALU .	
		(2) Program counter	
		(3) Instruction register.	[4]
10	il.	recombined Sugares a resignative absorber of mesons	