Diplete - ET / CS (OLD SCHEME)

JUNE 2009

Code: DE01/

DC01 Time: 3 Hours 100

Subject: MATHEMATICS - I Max. Marks:

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to O. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Choose the correct or the best alternative in the following: **Q.1**

 $(2\times$

a. If $\sin \theta + \cos \theta = x$, then the value of $\sin^6 \theta + \cos^6 \theta$ is equal to

(A)
$$\frac{1}{4}$$

(B)
$$\frac{1}{4}(1+6x^2)$$

(A)
$$\frac{1}{4} (1+6x^2-3x^4)$$

(B)
$$\frac{1}{4} (1+6x^2)$$
 (D) $\frac{1}{2} (5-3x^2)$

b. If
$$\tan \theta = \frac{m^2 - n^2}{2mn}$$
 then the value of cosec **è** is equal to

$$(\mathbf{A}) \frac{m^2 + n^2}{mn}$$

(B)
$$\frac{m^2 - n^2}{m^2 + n^2}$$

(C)
$$\frac{m^2 + n^2}{m^2 - n^2}$$

(D)
$$\frac{m^2 + mn}{m^2 - n^2}$$

c. The value of definite integral
$$\frac{\int_{-\infty}^{\infty} |x| dx}{|x|}$$
 is equal to

(A) a

(B) a^2

 (\mathbf{C}) 0

- **(D)** 2a
- d. If (3, -4) and (-6, 5) are the extremities of the diagonal of a parallelogram and (-2, -4)1) is the third vertex, then the fourth vertex is

$$(A)(-1,0)$$

(B) (0,-1)

$$(C)$$
 $(-1, 1)$

(D) None of these.

e. If the circle $x^2 + y^2 + 2x + 3y + 1 = 0$ cuts $x^2 + y^2 + 4x + 3y + 2 = 0$ in A and B, then the equation of the circle on AB as diameter is

(A)
$$x^2 + y^2 + x + 3y + 3 = 0$$

(B)
$$2x^2 + 2y^2 + 2x + 6y + 1 = 0$$

(C)
$$x^2 + y^2 + x + 6y + 1 = 0$$

(D) None of these.

f. If the r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the expansion of $(1+x)^{14}$ are in A.P., then the value of r is given by

(B) 6

(D) 9

g. If
$$\sin y = x \sin(a+y)$$
, then $\frac{dy}{dx}$ equals to

(A)
$$\sin(\alpha+y)$$

(B)
$$\sin^2 a$$

$$\frac{\sin^2(a+y)}{\sin^2(a+y)}$$

$$\frac{\sin^2 a}{\sin^2 a}$$

(C)
$$\sin a$$
 (D) $\sin(a + b)$

The curve $\left(\frac{x}{a}\right)^n + \left(\frac{y}{b}\right)^n = 2$ touches the line $\frac{x}{a} + \frac{y}{b} = 2$ at the points (a,b) for n = 1

(B) 2

(D) all non-zero values of n.

The value of
$$I = \int_{-1}^{1} e^{|x|} dx$$
 is equal to

(B) 2(e-1)

(D) 2(1-e)

j. The solution of
$$ye^{y}dx = (y^3 + 2xe^{y})dy$$
 is

(A)
$$x^2 + y^2 e^{-y} = cy^2$$

(C) $x + y^2 e^{-y} = cy^2$

(B)
$$x - y^2 e^{-y} = cy^2$$

(C)
$$x + y^2 e^{-y} = cy^2$$

(D) None of these.

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. In a triangle ABC, a, b, c are the sides of triangle and A, B, C are the angles, then find the value of $\frac{c-b\cos A}{b-c\cos A}$ in terms of angles.

 (5)
 - b. In a triangle, the lengths of the two larger sides are 10 and 9 respectively. If the angles are in A.P, then find the length of the third side. (5)
 - c. If $\sin^{-1} \frac{2a}{1+a^2} + \sin^{-1} \frac{2b}{1+b^2} = \tan^{-1} x$, then find the value of x. (6)
- **Q.3** a. If the third term in the expansion of $(x + x^{\log_{10} x})^5$ is 10^6 then find the value of x. **(8)**
 - b. If $y = \left[x \left(\frac{x^2}{2} \right) + \left(\frac{x^3}{3} \right) \left(\frac{x^4}{4} \right) + \dots \infty \right] \quad \text{and} \quad |x| < 1, \text{ then}$ $x = \left[y + \left(\frac{y^2}{2!} \right) + \left(\frac{y^3}{3!} \right) + \left(\frac{y^4}{4!} \right) + \dots \infty \right]$ (8)

$$f(x) = \begin{cases} \frac{x^2}{a}, & 0 \le x < 1 \\ a, & 1 \le x < \sqrt{2} \\ \frac{2b^2 - 4b}{x^2}, & x \ge \sqrt{2} \end{cases}$$

- Q.4 a. The function is continuous for $0 \le x < \infty$ then find the most suitable values of a and b.

 (8)
 - b. If f(x) is twice differentiable such that f''(x) = -f(x) and f'(x) = g(x), $h(x) = [f(x)]^2 + [g(x)]^2$, then find the value of h(10) if h(5) = 11.

 (8)
- Q.5 a. A, B are two points (3, 4) and (5, -2); find the point P such that PA = PB and the area of triangle PAB = 10. (8)

- b. If p and p' are the perpendicular from the origin on the straight lines whose equations are $x \sec \theta y \csc \theta = a$, $x \cos \theta + y \sin \theta = a \cos 2\theta$ prove that $4p^2 + p'^2 = a^2$.
- **Q.6** a. Let A be the centre of the circle $x^2+y^2-2x-4y-20=0$. Suppose the tangents at the points B (1,7) and D (4, -2) on the circle meet at the point C. Find the area of quadrilateral ABCD. (8)
 - b. If the normal at the end of a latus rectum of an ellipse passes through one extremity of a minor axes, show that eccentricity of the curve is given by $e^4 + e^2 1 = 0$. (8)
- Q.7 a. Prove that the sum of intercepts on the coordinate axes of any tangent to the curve constant. (8)
 - b. Show that the semi-vertical angle of the cone of maximum volume of given slant height is $\tan^{-1} \sqrt{2}$. (8)
- **Q.8** a. Prove that $\int_{0}^{1} x \left(\tan^{-1} x \right)^{2} dx = \frac{\pi}{4} \left(\frac{\pi}{4} 1 \right) + \frac{1}{2} \log 2$ (8)
 - b. If $U_n = \int_0^{\pi/2} x \left(\sin^n x\right) dx \ (n > 1)$ then prove that $U_n = \frac{n-1}{n} U_{n-2} + \frac{1}{n^2}$. Deduce that $U_5 = \frac{149}{225}$ (8)
- **Q.9** a. Find the volume formed by the revolution of the loop of the curve $y^2(\alpha + x) = x^2(\alpha x)$ about x-axis. (8)
 - b. Solve $x \sin x \frac{dy}{dx} + (x \cos x + \sin x) y = \sin x$ (8)