DECEMBER 2006

Code: D-01 / DC-01 Subject: MATHEMATICS - I Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following: (2x10)

			2	
a.	If one root of the equation	$2x^2 - 10x + K = 0$ is	3	of the other root, then K is

(A) 2

(B) 8

(C) 10

 (\mathbf{D}) 12

b. The centroid of the triangle formed by the straight lines y + x = 3, y - x = 3, y = 0 is

(A) (0,0)

(B) (1, 0)

(C) (0, 1)

(D) (1,

1)

- c. The distance between the parallel lines 3x + 4y + 5 = 0 and 3x + 4y + 15 = 0 is
 - **(A)** 1

(B) 2

(C) 3

 (\mathbf{D}) 5

d.
$$\lim_{x\to 0} \frac{\sin \ mx - \sin \ nx}{x}$$
, where $m\neq n$ is equal to

(A) m

(B) n

(C) m-n

 $(\mathbf{D}) m + n$

e. If
$$y = \sin^2 2x$$
, then $\frac{dy}{dx}$ is equal to

(A) $2 \sin 4x$

(B) 4 sin 2x

(C) sin 4x

(D) 2 sin 2x

f.
$$\int \frac{dx}{1+\sin x}$$
 is equal to

$$(\mathbf{A}) \quad \sin \frac{x}{2} + \cos \frac{x}{2}$$

(B)
$$\log (1 + \sin x)$$

(C)
$$\tan x + \sec x$$

(D)
$$\tan x - \sec x$$

g.
$$\int\limits_{0}^{\infty} \frac{e^{x}}{1+e^{2x}} dx$$
 is equal to

(A)
$$\frac{\pi}{2}$$

$$(\mathbf{R}) = \frac{7}{4}$$

(C) 1

$$(\mathbf{D}) 0$$

h. The solution of the differential equation $\sqrt{y} dx + \sqrt{x} dy = 0$ is

(A)
$$\sqrt{x} + \sqrt{y} = \text{const}$$

(B)
$$\sqrt{xy} = \text{const}$$

(C)
$$x\sqrt{y} + y\sqrt{x} = const$$

(B)
$$\sqrt{xy} = \text{const}$$
 (D) \sqrt{x} $\sqrt{y} = \text{const}$

i. The value of $\sin 75^{\circ} - \cos 75^{\circ}$ is equal to

(C)
$$\frac{1}{\sqrt{2}}$$

(D) zero

j. The value of
$$\tan^{-1} \frac{1}{2} + \tan^{-1} \frac{1}{3}$$
 is

(A)
$$2\pi$$

(C)
$$\frac{\pi}{2}$$

(**D**)
$$\frac{\pi}{4}$$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Show that the coefficient of x^n in the expansion of $(1+x)^{2n}$ is double the coefficient of x^n in the expansion of $(1+x)^{2n-1}$. (8)
 - b. If $x = 1 + a + a^2 +\infty$ and $y = 1 + b + b^2 +\infty$, where |a| < 1, |b| < 1 then $1 + ab + a^2b^2 + a^3b^3.....\infty = \frac{xy}{x + y 1}$.
- Q.3 a. If $A + B + C = \pi$, show that $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \sin B \sin C$. (8)
 - b. If a, b, c be the sides opposite to the angles A, B, C of a triangle ABC, show that $\frac{b-c}{b+c} = \frac{\tan \frac{B-C}{2}}{\tan \frac{B+C}{2}}$
- Q.4 a. Derive the formula for finding the area of a triangle whose vertices are $\mathbb{A}(x_1, y_1), \mathbb{B}(x_2, y_2)$ and $\mathbb{C}(x_3, y_3)$.
 - b. Find the equation of a straight line joining the point (3, 5) to the point of intersection of the lines 4x + y = 1 and 7x 3y = 35. (8)
- Q.5 a. Find the equation of the circle which passes through the centre of the circle

$$x^{2} + y^{2} + 8x + 10y - 7 = 0$$
 and is concentric with the circle $2x^{2} + 2y^{2} - 8x - 12y - 9 = 0$. (8)

- b. Find the focus, vertex, directrix and axis of the parabola $y = -4x^2 + 3x$. (8)
- **Q.6** a. Evaluate $\lim_{x \to 0} \frac{\mathbb{E}\left(3^{x} 1\right)}{1 \cos x}.$ (8)

b. Find
$$\frac{dy}{dx}$$
, if $y = \sin^{-1} \frac{2\theta}{1 + \theta^2}$, $x = \tan^{-1} \frac{2\theta}{1 - \theta^2}$. (8)

Q.7 a. Derive the equation of the tangent and the normal to the curve $y^2 = 4ax$ at the point $(at^2, 2at)$. (8)

b. Evaluate
$$\int \frac{x + \sin x}{1 + \cos x} dx$$
 (8)

Q.8 a. Find the volume of the solid of revolution obtained by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about x-axis. (8)

$$\int\limits_{2}^{\frac{\pi}{2}} \sin^n x dx$$
 b. Evaluate 0 , for any positive integer n. (8)

Q.9 Solve any two of the following differential equations.

(i)
$$\frac{dy}{dx} = e^{3x-y} + x^2 e^{-y}$$
.

(ii)
$$y - x \frac{dy}{dx} = x + y \frac{dy}{dx}.$$
(iii)
$$(1 + x^2) \frac{dy}{dx} + 2xy = \frac{1}{1 + x^2}.$$
(16)