Total No. of Questions-12]
[Total No. of Printed Pages -4+2
[3762]-144
S.E. (E\&TC/Electronics) (I Sem.) EXAMINATION, 2010

DIGITAL LOGIC DESIGN

Time : Three Hours
(2008 COURSE)
Maximum Marks : 100
N.B. :- (i) Answers to the two Sections should be in separate answer-books.
(ii) Neat diagrams must be drawn ever necessary. (iii) Figures to the right indicat fy marks.
(iv) Assume suitable data, if Insessary.
(v) In Section I : Attempt No. 1 or Q. No. 2, Q. No. 3 or Q . No. 4, Q. D_{5} or Q. No. 6. In Section \amalg : Attempt Q. No. 7 or Q. No. 8, Q. No. 9 or Q. No. 10, Q. No. 11 or Q. No. 12.

SECTION I

1. (a) Sian the following Boolean function by using a Quine-McClusky

$$
\begin{equation*}
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(0,2,3,6,7,8,10,12,13) \tag{10}
\end{equation*}
$$

(b) Why is Gray code used for labelling the cells of K-map.
(c) Write a short note on ALU.
2. (a) Design a logic circuit which has three inputs C and gives a high output when majority of input. high. [6]
(b) Draw logic circuit of a 4:1 multiplexer and its working. [6]
(c) Design a full adder using 3:8 de and NAND gates. [6] \bigcirc
3. (a) Explain the difference betws combinational and sequential circuits.
Also convert JK FlipCle into D flip-flop and T flip-flop. [8]
(b) Design and imprint a mod-10 asynchronous counter using T Flip-Flges.
4. (a) ain the operation of a master-slave JK Flip-Flop and show how the race around condition is eliminated in it.

Design mod-6 synchronous counter using JK Flip-Flops and implement it.

Or
(c) Explain how shift registers are used as :
(i) Serial to parallel converter
(ii) Parallel to serial converter.
5. (a) Describe different modelling styles of VHDL examples.

(b) Write a VHDL code to design a BCD to se segment decoder for a single digit LED display.
6. (a) Explain different classes of dabjects in VHDL with example for each.
(b) Explain the folloying satements used in VHDL with suitable example :
(i) Procass
(ii)

Wait.

SECTION II

7. (a) Draw and explain block diagram of Mealy and Moore machine. [6]
(b) Write short notes on :
(i) State diagram
(ii) State table
(iii) State reduction

(iv) State assignment.
(c) What does the word 'Finite' signify in the terms finite state machine ?

$$
0
$$

State advantages and disadvan ag a finite state machine. [4]
8. (a) Design a sequential circusing Mealy machine for detecting overlapping sequenc 101. Use JK Flip-flops.
(b) Explain ASM chot notations in detail.
(c) What is the ference between conventional flow charts and ASM ch rts ?
9. (a) With the help of neat circuit diagram explain the working

A two-input TTL NAND gate
(ii) A two-input CMOS NOR gate.
(b) What is meant by open collector output of TTL gate? What is its utility? Draw the circuit showing open collector output and pull up resistor.

Or
10. (a) Explain the following characteristics of TTL logic fammes :
(i) Power dissipation
(ii) Noise margin
(iii) Propagation delay
(iv) Fan out.
[8]
(b) Describe what happens to each of the following CMOS characteristics as $V_{D D}$ is ner ased :
(i) Noise margin
(ii) Power dissipant
(iii) Switching sped.

And in applications is CMOS ideally suited ? [8]
11. (a) State arious characteristics of memory devices and explain brief any two.
(b) A combinational circuit is defined by the function :

$$
\begin{aligned}
& \mathrm{F}_{1}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(1,5,7) \\
& \mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\Sigma \mathrm{m}(5,6,7)
\end{aligned}
$$

Implement the circuit with a PLA.
(c) Give the comparison between PROM, PLA and AI
Or
12. (a) Differentiate between static and dynami R-M. Draw circuits of one cell of each and explain its morking.
(b) Obtain a 2048×8 memory us 256×8 memory chips. [6]
(c) Distinguish between voltije and non-volatile memories. [2]

$$
\varsigma
$$

