

# ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2007 DATA STRUCTURE & ALGORITHMS SEMESTER - 3

|               |  |     | The state of the s |      |
|---------------|--|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Time: 3 Hours |  | 2.5 | [Full Marks:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | : 70 |

|        |            | ( Multiple Ch                 | oice Type    | <b>Questions</b> )                    |                                          |
|--------|------------|-------------------------------|--------------|---------------------------------------|------------------------------------------|
| Cho    | ose tl     | he correct alternatives of th | ne following | • • • • • • • • • • • • • • • • • • • | 10 × 1 = 10                              |
| i)     | The        | e vertex, removal of which    | makes a gra  | ph disconnected is call               | ed                                       |
|        | a)         | pendant vertex                | <b>b</b> )   | bridge                                |                                          |
|        | c)         | articulation point            | d)           | colored vertex.                       |                                          |
| ii)    | Sta        | bility of Sorting Algorithm i | s important  | for                                   |                                          |
|        | a)         | Sorting records on the b      | asis of mult | iple keys                             |                                          |
| -<br>- | <b>b</b> ) | Worst case performance        | of sorting a | lgorithm                              | en e |
|        | c)         | Sorting alpha numeric k       | eys as they  | are likely to be the sam              | e                                        |
|        | d)         | None of these.                |              |                                       |                                          |
| iii)   | A v        | ertex of in-degree zero in a  | directed gr  | aph is called                         |                                          |
|        | a)         | articulation point            | b)           | sink                                  |                                          |
|        | c)         | isolated vertex               | d)           | root vertex.                          |                                          |
| iv)    | The        | e ratio of items present in t | he hash tab  | le, to the total table size           | e is called                              |
|        | a)         | balanced factor               | <b>b</b> )   | load factor                           |                                          |
|        | c)         | item factor                   | d)           | none of these.                        |                                          |



v) The Ackerman function, for all non-negative values of m and n is recursively defined as

$$A(m, n) = \begin{cases} n+1 & \text{if } m=0 \\ A(m-1, 1) & \text{if } m!=0 \text{ but } n=0 \\ A(m-1, A(m, n-1)) & \text{if } m!=0 \text{ and } n!=0 \end{cases}$$

Therefore the value of A(1, 2) is

a) 4

**b**)

c) 5

- d) 2.
- vi) If a binary tree is threaded for in-order traversal a right NULL link of any node is replaced by the address of its
  - a) successor

b) predecessor

c) root

- d) own.
- vii) In a height balanced tree the heights of two sub-trees of every node never differ by more than
  - a) 2

**b**) 🦿

c) 1

- d) 1
- viii) Adjacency matrix of a digraph is
  - a) identity matrix

- b) symmetric matrix
- c) asymmetric matrix
- d) none of these.
- ix) Which of the following is the best time for an algorithm?
  - a) O(n)

b)  $(\log_2 n)$ 

c)  $O(2^n)$ 

- d)  $O(n \log_2 n)$ .
- x) A linear list in which elements can be added or removed at either end but not in the middle is known as
  - a) queue

b) deque

c) stack

d) tree.

# Q Utech

### GROUP - B

## (Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$ 

2. Show that the function f(n) defined by:

$$f(1) = 1$$
  
 $f(n) = f(n-1) + \frac{1}{n}$  for  $n > 1$ 

has the complexity  $O(\log n)$ .

Define Big - O,  $\Omega$ ,  $\theta$  notations.

$$2 + 3 = 5$$

- 3. Let the size of the elements stored in an  $8 \times 3$  matrix be 4 bytes each. If the base address of the matrix is 3500, then find the address of A [4, 2, ] for both row major & column major cases. What is sparse matrix? 2 + 2 + 1 = 5
- 4. Write an algorithm to insert a node in a BST.

5

- 5. Write an algorithm to solve the Tower of Hanoi problem. Also calculate the time complexity of your algorithm.
- 6. Prove that, for any non-empty binary tree T, if  $n_0$  be the number of leaves and  $n_1$  be the number of nodes of degree 2, then  $n_0 = n_1 + 1$ .

### GROUP - C

## (Long Answer Type Questions)

Answer any three questions.

 $3 \times 15 = 45$ 

- 7. a) Write an algorithm of Merge Sort and explain with an example.
  - b) Compare the complexity of selection sort & insertion sort.
  - c) Explain with a suitable example, the principal operation of Quick sort.
  - d) Find the complexity of Quick sort algorithm.

5 + 3 + 5 + 2 = 15

- 8. a) Write an algorithm to add two polynomials.
  - b) Write the recursive function for the Tower of Hanoi problem. Also draw the recursion tree for any set of initial values.
  - c) What is hashing? Explain Linear Probing & Quadratic Probing with example.
  - d) Derive values related to the average case and worst case behavior of Bubble Sort algorithm. Also, confirm that the best case behavior is O(n).

$$4 + (3 + 2) + 1 + (1\frac{1}{2} \times 2) + 2 = 15$$



9. a) The in-order & pre-order traversal sequence of nodes in a binary tree are given below:

In-order:

EACKFHDBG

Pre-order:

FAEKCDHGB

Draw the binary tree. State briefly the logic used to construct the tree.

b) Insert the following keys into a B-Tree of order 3:

p. q. r. d, h, m, l, s, k, n.

- c) Construct an expression tree for the expression  $E = (2x + y)^* (5a b)^3$ .
- d) Write a non-recursive algorithm for in-order traversal of a binary tree.

4 + 4 + 3 + 4 = 15

- 10. a) Write the difference between stack and queue and implement the operations of priority queue. 2 + 4
  - b) Explain spanning tree and create a spanning from the following graph. 2 + 2



c) Write the key features of circular linked list and state why it is important in case of Josephus problem. 2 + 3



- 11. a) How can a polynomial such as  $5x^4 3x^2 + 9x 11$  be represented by a linked list?
  - b) Explain the advantages of binary search over sequential search.
  - c) Write an algorithm to delete a node from a doubly linked list, where a node contains one data and two address ( prev & next ) portion.
  - d) Are recursive routines more efficient than non-recursive routines? Justify your answer with example.

END