Register	1			
Number				

Part III — CHEMISTRY

(English Version)

Time Allowed: 3 Hours [Maximum Marks: 150

Note: i) Answer all the questions from Part - I.

- ii) Answer any fifteen questions from Part-II.
- iii) Answer any seven questions from **Part III** covering all Sections and choosing at least *two* questions from each Section.
- iv) Question No. **70** is compulsory. Answer any *three* from the remaining questions in **Part IV**.
- v) Draw diagrams and write equations wherever necessary.

PART - I

Note: Answer all the questions.

 $30\times1=30$

Choose and write the correct answer:

1.	The metal	used in	galvanising	iron sheet:	s is
----	-----------	---------	-------------	-------------	------

a) chromium

b) zinc

c) copper

d) silver.

- 2. Among the Lanthanide elements, with the increase in atomic number the tendency to act as reducing agent
 - a) increases

b) decreases

c) no change

d) none of these.

[Turn over

3. The long mission space probes use as power source.

	a)	Pu	b)	U .				
	c)	Th	d)	Pm.				
4.								
	a)	K ₄ [Fe(CN) ₆]	b)	$\left[\text{ Cu } \left(\text{ NH }_{3} \right)_{4} \right] \text{ Cl }_{2}$				
	c)	K_3 [Cr (C_2 O_4) $_3$]	d)	K_3 [Fe (CN) $_6$] .				
5.	Loss of β -particle is equivalent to							
	a)	increase of one proton only	b)	decrease of one neutron				
	c)	loss of proton	d)	both (a) and (b).				
6.		first order rate constant of a ruled for 50% completion of a reac		on is 0.0693 min ⁻¹ . Then the time				
	a)	10 min	b)	1 min				
	c)	100 min	d)	50 min.				
7.	In e	ase of physical adsorption, there i	s desc	orption when				
	a)	temperature increases	b)	temperature decreases				
	c)	pressure increases	d)	concentration increases.				
8.	Smoke is a colloidal solution of							
	a)	gas in solid	b)	solid in gas				
	c)	gas in liquid	d)	liquid in gas.				
9. Colloidal medicines are more effective because								
	a)	they are clean						
	b)	they are easy to prepare						
	c)	the germs move towards them						
	d)	they are easily assimilated and adsorbed.						
10.	When sodium acetate is added to a solution of acetic acid, the degree of ionisation of acetic acid							
	a)	increases	b)	decreases				
	c)	does not change	d)	becomes unity.				
В								

11.	The nitro group can be reduced to primary amino group by							
	a)	Sn / conc. HCl	b)	Zn dust				
	c)	Zn / NH ₄ Cl	d)	Zn / NaOH.				
12.	The	he organic compound that undergoes carbylamine reaction is						
	a)	$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$	b)	$C_2H_5NH_2$				
	c)	(C ₂ H ₅) ₃ N	d)	(C ₂ H ₅) ₄ N ⁺ I ⁻ .				
13.	The	nitrogen compound used in the pr	repara	ation of sulpha drugs is				
	a)	methylamine	b)	nitromethane				
	c)	aminobenzene	d)	nitrobenzene.				
14.	Nuc	leic acid is made up of						
	a)	an organic base	b)	a sugar unit				
	c)	phosphoric acid	d)	all of these.				
15.	Ultir	nate product of hydrolysis of prote	in is					
	a)	aniline	b)	aliphatic acid				
	c)	amino acid	d)	aromatic acid.				
16.	The circumference of the circular orbit of an electron is an integral multiple of its							
	a)	frequency	b)	momentum				
	c)	mass	d)	wavelength.				
17.	. The nature of hybridisation in IF $_7$ molecule is							
	a)	sp^3d^2	b)	$sp~^3~d~^4$				
	c)	sp^3d^3	d)	sp^2d^4 .				
18.	. On moving down a group, the radius of an ion							
	a)	decreases						
	b)	increases						
	c)	first increases and then decrease	es					
	d)	remains a constant.						

19	The	toxic	element	Ωf	Boron	family	, ie
IJ.	1116	LOXIC	CICILICIII	OI.	DOLUIT	Tammi	(ID

a) Boron

b) Indium

c) Thallium

d) Gallium.

20. The general outer electronic configuration of d block elements is

a) $(n-1)d^{1-10}$

- b) $(n-1) d^{1-10} ns^{1-2}$
- c) $(n-1) d^{10} ns^{1-2}$
- d) $(n-1) d^5 ns^1$.

21. The crystal structure of CsCl is

a) simple cube

- b) face-centred cube
- c) body-centred cube
- d) edge-centred cube.

22. Change in Gibbs free energy is given by

- a) $\Delta G = \Delta H + T \Delta S$
- b) $\Delta G = \Delta H T \wedge S$

c) $\Delta G = \Delta H \cdot T \Delta S$

d) none of these.

23. For the reaction 2 Cl (g) \rightarrow Cl₂ (g), the signs of Δ H and Δ S are respectively

a) +,-

b) +,+

c) -,-

d) -,+

24. If the equlibrium constant of the reaction $2 A \rightleftharpoons B$ is K_1

and that of $B \rightleftharpoons 2A$ is K_2 , then

a) $K_1 = 2K_2$

b) $K_1 = \frac{1}{K_2}$

c) $K_1 = (K_2)^2$

d) $K_2 = \left(\frac{1}{K_1}\right)^2$.

25. When Δng in a homogenous gaseous equlibrium is positive, then

a) $K_p = K_c$

b) $K_p < K_c$

c) $K_p > K_c$

d) $K_p = \frac{K_c}{2}$.

26. The characteristic odour of lower phenols is

a) carbolic acid

- b) fruity
- c) oil of bitter almonds
- d) rotten fish.

- 27. Oxygen atom of ether is
 - a) very active

b) inert

c) oxidising

- d) replaceable.
- 28. Diethyl ether behaves as a
 - a) Lewis acid

b) Lewis base

c) neutral compound

- d) Brönsted acid.
- 29. The formation of a cyanohydrin with a ketone is an example of
 - a) electrophilic substitution
- b) nucleophilic addition
- c) nucleophilic substitution
- d) electrophilic addition.
- 30. The isomerism exhibited by CH $_3$ CH $_2$ COOH and CH $_3$ COOCH $_3$ is
 - a) metamerism

b) functional isomerism

c) chain isomerism

d) position isomerism.

PART - II

Note: i) Answer any fifteen questions.

- ii) Each answer should be in one or two sentences. $15 \times 3 = 45$
- 31. What are the conditions for effective H 2-bonding?
- 32. Explain why the first ionisation energy of Be is greater than that of B.
- 33. Write a note on plumbo solvency.
- 34. Illustrate the dehydrating property of phosphorous pentoxide ($P_2 \, O_5$) with two examples.
- 35. Why do d-block elements have variable oxidation states?
- 36. How is chrome-plating done?
- 37. Give any three differences between chemical reactions and nuclear reactions.
- 38. What is a vitreous state?
- 39. What types of liquids or substances deviate from Trouton's Rule?
- 40. Write the equlibrium constants K_c for the following reactions :
 - i) $H_2O_2(g) \iff H_2O(g) + \frac{1}{2}O_2(g)$
 - ii) $CO(g) + H_2O(g) \iff CO_2(g) + H_2(g)$.

- 41. Show that for a first order reaction time required for 99% completion is twice the time required for 90% completion of the reaction.
- 42. What are consecutive reactions? Give an example.
- 43. Write a note on auto-catalyst.
- 44. What is meant by common ion effect?
- 45. Mesotartaric acid is optically inactive. Justify.
- 46. Give a brief account on coupling reaction of phenol with benzene diazonium chloride.
- 47. Give any three uses of benzyl alcohol.
- 48. How is urotropine prepared? Mention its use.
- 49. Write a note on HVZ reaction.
- 50. What is Gabriel phthalimide synthesis?
- 51. Write a brief note on 'Antiseptic'.

PART - III

Note: Answer any seven questions choosing at least two questions from each Section. $7 \times 5 = 35$

SECTION - A

- 52. Derive de Broglie's equation.
- 53. How is gold extracted from its ore?
- 54. Describe the extraction of lanthanides from monazite sand.
- 55. For the complex K_4 [Fe (CN) $_6$]

mention

- a) IUPAC name
- b) Central metal ion
- c) Geometry of the complex
- d) Ligand
- e) Co-ordination number.

B

SECTION - B

- 56. State the various statements of second law of thermodynamics.
- 57. The dissociation equilibrium constant of HI is 2.06×10^{-2} at 458 K. At equilibrium the concentrations of HI and I₂ are 0.36 M and 0.15 M respectively. What is the equilibrium concentration of H₂ at 458 K?
- 58. Discuss the characteristics of a first order reaction.
- 59. Derive Nernst equation.

SECTION - C

- 60. Distinguish between anisole and diethyl ether.
- 61. Explain the mechanism of aldol condensation of acetaldehyde.
- 62. How is benzoic acid obtained from

CH₂ CH₃

- a)
- b) Phenyl cyanide
- c) Carbon dioxide?
- 63. Write a note on anaesthetics.

PART - IV

Note: Question No. **70** is compulsory and answer any three from the remaining questions. $4 \times 10 = 40$

- 64. a) Explain the various factors that influence electron affinity. 5
 - b) Describe in detail how noble gases are isolated from air by Ramsay-Rayleigh's method.
- 65. a) Apply VB theory to find out the geometry of $\left[\text{Ni} \left(\text{NH}_3 \right)_4 \right]^{2+}$ and calculate its magnetic moment.
 - b) Write about radiocarbon dating.

l Turn over

5

B

66.	a)	Explain Bragg's spectrometer method.	5
	b)	Write any two chemical methods for the preparation of colloids.	5
67.	a)	Derive Henderson equation.	5
	b)	Establish a relation between free energy and e.m.f.	5
68.	a)	Distinguish racemic form from Meso form with suitable example.	5
	b)	Discuss the isomerism exhibited by carboxylic acid.	5
69.	a)	How are the following conversions carried out?	
		i) Nitrobenzene to phenyl hydroxylamine	
		ii) Aniline to phenyl isocyanide	
		iii) Benzene diazonium chloride to biphenyl.	5
	b)	What is a peptide bond? Illustrate the formation of a peptide bond in glycalanine. Draw the structures of glucose and fructose.	yl 5
70.	a)	An organic compound A (C_7H_6O) reduces Tollen's reagent. On treating	ıg
		with an alkali compound A forms B and C . B on treating with sodaling forms benzene and C (C_7H_8O) is an antiseptic. Identify compound	
		A, B and C. Explain the reactions.	5
	b)	The sulphide ore of an element of group 12 when roasted gave compound which on reduction with carbon gave the element B . The carbonate C of the element is used for skin diseases. Identify A , B and C and write the required reaction.	is
		OR	
	c)	An organic compound A of molecular formula C $_6$ H $_6$ O gives violated colouration with neutral FeCl $_3$. Compound A on treatment with metallic M gives compound B . Compound B on treatment with CO $_2$ at 400 K und	٧a
		pressure gives C . This product on acidification gives compound $D(C_7H_6O_3)$ which is used in medicine. Identify A , B , C and D are	
		explain the reactions.	5
	d)	Find the pH of a buffer solution containing 0.2 mole/ l of CH $_3$ COONa at 0.15 mole/ l of CH $_3$ COOH. K_a for acetic acid is 1.8×10^{-5} .	nd 5