- Q-7. (a) A balanced delta connected load of 8 + j6 ohm per phase is connected to a 3-phase 230 V, 50 Hz supply. Find line current, power factor, reactive power and total volt-amperes. [7]
 - (b) The input to a 3-phase induction motor running on no-load was measured by two wattmeter method. The readings of wattmeter were 1.2 KW and 6 KW, the first reading having been obtained by reversing the current coil connection. Find power input to the motor & power factor. [7]

(c) Explain methods of power factor improvement. [6]

- Q-8. (a) A 2 ohm resistance, 0.125 *F* capacitance and 3 H inductance are connected in series across a voltage $v(t) = 12 \sin (2t + 30^{\circ})$. Find impedance, current, power factor and active power. [10]
 - (b) When voltage $v = 10 \sin (500t 60^{\circ})$ is applied to a series A.C. circuit, the current is $i = 6 \sin (500t 10^{\circ})$. Find: (i) power factor (ii) apparent power (iii) active power (iv) reactive power. [10]

Roll No.

Lingaya's University B.Tech. 1st Year (Term – II) Examination – Feb 2011 Electrical Engineering (EL - 101)

[Time: 3 Hours]

[Max. Marks: 100]

Before answering the question, candidate should ensure that they have been supplied the correct and complete question paper. No complaint in this regard, will be entertained after examination.

Note: – Attempt five questions in all. All questions carry equal marks. Question no. 1 is compulsory. Select two questions from Section B and two questions from Section C.

Section – A

Q-1. Part – A

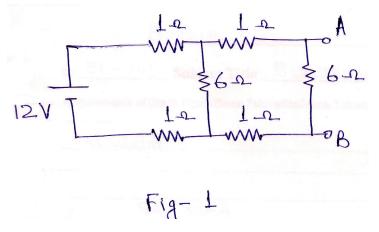
Select the correct answer of the following multiple choice questions. [10x1=10]

- (i) To determine the polarity of voltage drop across a resistor, it is necessary to know the
 - (a) Value of resistance
 - (b) Direction of current in the resistance
 - (c) Value of current in the resistance
 - (d) Value of resistance & direction of current
- (ii) The peak value of sine wave is 100. The *rms* value is
 - (a) 70.7 (b) 50 (c) 35.35 (d) 100
- (iii) The internal resistance of a circuit is 16 ohm. For maximum power transfer, the load resistance should be
 - (a) 4 ohm (b) 6 ohm (c) 16 ohm (d) 20 ohm
- (iv) Open circuit test of a transformer provides
 - (a) Copper loss (b) Core loss
 - (c) Copper & core loss (d) None of these
- (v) Value of slip in an induction motor is
 - (a) $N-N_s$ (b) N_s-N (c) N_s (d) N

(vi)	Reluctance in a magnetic circuit is analogous to				
	(a) Conductance	(b) Inductance			
	(c) Capacitance	(d) Resistance			
(vii)	A moving coil ammeter is used to measure				
	(a) A.C. & D.C. current	(b) Only A.C. current			
	(c) Only D.C. current	(d) None of these			
(viii)) The maximum value of power factor in A.C. circuit is				
	(a) 0 (b) 1	(c) Between $0 \& 1$ (d) -1			
(ix)	A material for permanent magnet should have				
	(a) High retentivity	(b) High permeability			
	(c) Low hysteresis loss	(d) High hysteresis loss			
(x)	Core of a transformer is laminated to reduce				
	(a) Hysteresis loss	(b) Eddy current loss			
	(c) Hysteresis & eddy current loss (d) Copper loss				

Part – B

(a)	State & explain Norton's theorem.	[5]
(b)	Derive <i>emf</i> equation of a transformer.	[5]


Section – B

Q-2. (a)	Draw and explain equivalent circuit of a transformer.	[6]
----------	---	-----

- (b) Explain principle, construction & working of a transformer. [7]
- (c) Explain efficiency of a transformer. Derive the condition for maximum efficiency. [7]
- Q-3. (a) Explain the principle of operation of three phase induction motor.
 - (b) Explain various methods of speed control of D.C. motor. [2x10=20]
- Q-4. (a) Explain principle, construction & working of energy meter.
 - (b) Explain principle, construction & working of moving coil ammeter. [2x10=20]

Section – C

- Q-5. (a) A 4700 Ω resistor and 2 micro-farad capacitor are connected in parallel across a 240V, 60 Hertz source. Determine circuit impedance and line current. [10]
 - (b) Determine Thevenin's equivalent circuit which may be used to represent the given network at the terminal AB (figure 1) and find the current in branch AB.
 [10]

Q-6. (a) Define following:-

	(i) Permeance	(ii)Reluctance (iii) Permeability	
	(iii) Reluctivity	(v) Magnetic field intensity	[5]
(b)	Explain hysteresis phenomenon.		[6]

(c) An iron ring is composed of three sections. The cross-sectional area is 0.001 sq. m. for each section. The mean arc length are $L_a = 0.3 \text{ m}, L_b = 0.2, L_c = 0.1 \text{ m}$. An air gap of 0.1 mm is cut in the ring. Relative permeability for section a, b and c are 5000, 1000 and 10000 respectively. Given $\mu_0 = 4\pi \times 10^{-7}$. Find reluctances of sections including air-gap. [9]