Q-7. (a) A balanced delta connected load of $8+\mathrm{j} 6$ ohm per phase is connected to a 3-phase $230 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. Find line current, power factor, reactive power and total volt-amperes.
(b) The input to a 3-phase induction motor running on no-load was measured by two wattmeter method. The readings of wattmeter were 1.2 KW and 6 KW , the first reading having been obtained by reversing the current coil connection. Find power input to the motor \& power factor.
[7]
(c) Explain methods of power factor improvement. [6]

Q-8. (a) A 2 ohm resistance, $0.125 F$ capacitance and 3 H inductance are connected in series across a voltage $v(t)=12 \sin \left(2 t+30^{\circ}\right)$. Find impedance, current, power factor and active power. [10]
(b) When voltage $v=10 \sin \left(500 t-60^{\circ}\right)$ is applied to a series A.C. circuit, the current is $i=6 \sin \left(500 t-10^{\circ}\right)$. Find: (i) power factor (ii) apparent power (iii) active power (iv) reactive power.
[10]

Roll No.

Lingaya's University
 B.Tech. ${ }^{\text {st }}$ Year (Term - II)
 Examination - Feb 2011
 Electrical Engineering (EL-101)

[Time: 3 Hours]

[Max. Marks: 100]
Before answering the question, candidate should ensure that they
have been supplied the correct and complete question paper. No
complaint in this regard, will be entertained after examination.
Note: - Attempt five questions in all. All questions carry equal marks. Question no. 1 is compulsory. Select two questions from Section B and two questions from Section C.

Section - A

Q-1. Part - A

Select the correct answer of the following multiple choice questions.
 [10×1=10]

(i) To determine the polarity of voltage drop across a resistor, it is necessary to know the
(a) Value of resistance
(b) Direction of current in the resistance
(c) Value of current in the resistance
(d) Value of resistance \& direction of current
(ii) The peak value of sine wave is 100 . The $r m s$ value is
(a) 70.7
(b) 50
(c) 35.35
(d) 100
(iii) The internal resistance of a circuit is 16 ohm. For maximum power transfer, the load resistance should be
(a) 4 ohm
(b) 6 ohm
(c) 16 ohm
(d) 20 ohm
(iv) Open circuit test of a transformer provides
(a) Copper loss
(b) Core loss
(c) Copper \& core loss
(d) None of these
(v) Value of slip in an induction motor is
(a) $\mathrm{N}-\mathrm{N}_{\mathrm{s}}$
(b) $\mathrm{N}_{\mathrm{s}}-\mathrm{N}$
(c) N_{s}
(d) N
(vi) Reluctance in a magnetic circuit is analogous to
(a) Conductance
(b) Inductance
(c) Capacitance
(d) Resistance
(vii) A moving coil ammeter is used to measure
(a) A.C. \& D.C. current
(b) Only A.C. current
(c) Only D.C. current
(d) None of these
(viii) The maximum value of power factor in A.C. circuit is
(a) 0
(b) 1
(c) Between 0 \& 1
(d) -1
(ix) A material for permanent magnet should have
(a) High retentivity
(b) High permeability
(c) Low hysteresis loss
(d) High hysteresis loss
(x) Core of a transformer is laminated to reduce
(a) Hysteresis loss
(b) Eddy current loss
(c) Hysteresis \& eddy current loss
(d) Copper loss

Part - B

(a) State \& explain Norton's theorem.
(b) Derive emf equation of a transformer.

Section - B

Q-2. (a) Draw and explain equivalent circuit of a transformer. [6]
(b) Explain principle, construction \& working of a transformer. [7]
(c) Explain efficiency of a transformer. Derive the condition for maximum efficiency.

Q-3. (a) Explain the principle of operation of three phase induction motor.
(b) Explain various methods of speed control of D.C. motor. $[2 \times 10=20]$

Q-4. (a) Explain principle, construction \& working of energy meter.
(b) Explain principle, construction \& working of moving coil ammeter.
$[2 \times 10=20]$

Section - C

Q-5. (a) A 4700Ω resistor and 2 micro-farad capacitor are connected in parallel across a 240 V , 60 Hertz source. Determine circuit impedance and line current.
(b) Determine Thevenin's equivalent circuit which may be used to represent the given network at the terminal AB (figure -1) and find the current in branch AB .
[10]

Fig-1

Q-6. (a) Define following:-
(i) Permeance
(ii) Reluctance
(iii) Permeability
(iii) Reluctivity
(v) Magnetic field intensity
(b) Explain hysteresis phenomenon.
(c) An iron ring is composed of three sections. The cross-sectional area is 0.001 sq . m. for each section. The mean arc length are $\mathrm{L}_{\mathrm{a}}=0.3 \mathrm{~m}, \mathrm{~L}_{\mathrm{b}}=0.2, \mathrm{~L}_{\mathrm{c}}=0.1 \mathrm{~m}$. An air gap of 0.1 mm is cut in the ring. Relative permeability for section a, b and c are 5000, 1000 and 10000 respectively. Given $\mu_{0}=4 \pi \times 10^{-7}$. Find reluctances of sections including air-gap.
[9]

