Code: AE11
Time: 3 Hours

JUNE 2011

Subject: CONTROL ENGINEERING

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q. 1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. For the second-order system $\mathrm{s}^{2}+3 \mathrm{~s}+20=0$, with a damping ζ of 0.336 , the value of damped natural frequency ($\mathrm{rad} / \mathrm{s}$) is:
(A) 4.21
(B) 8.42
(C) $\sqrt{20}$
(D) $3 \sqrt{20}$
b. Constant-M circle has infinite radius with centre at infinity on the real axis, i.e. a straight line parallel to the imaginary axis of the $G(s)$-plane for:
(A) $\mathrm{M}<1$
(B) $\mathrm{M}=0$
(C) $\mathrm{M}=1$
(D) $\mathrm{M}>1$
c. The steady-state error e_{Ss} for a unit-ramp input is constant (as in Fig.1) for a system of Type:
(A) 2
(B) 1
(C) 0
(D) 3
d. The overall transfer function of Fig. 2 is:

(A) RCs
(B) $\frac{1}{\mathrm{RCs}}$
(C) $1+\mathrm{RCs}$
(D) $\frac{1}{1+\mathrm{RCs}}$
e. The Bode asymptote plot of Fig. 3 refers to the system with $\mathrm{G}(\mathrm{s})$ equal to:
(A) $1+0.1 \mathrm{~s}$
(B) $1+10 \mathrm{~s}$
(C) $0.01+10 \mathrm{~s}$
(D) $0.1+0.01 \mathrm{~s}$
f. The root-locus of the system $G(s)=\frac{k}{s(s+4)}$ shown in Fig. 4 gives a value of k at point s_{1} equal to:

Fig. 2

Fig. 3
(A) 4
(B) 16
(C) 25
(D) 29

Fig. 4
g. A system with characteristic equation $4 s^{3}+2 s^{2}+100 s+k=0$ is stable by Routh-Hurwitz criterion if:
(A) $0<\mathrm{k}<50$
(B) $0<\mathrm{k}<100$
(C) $50<\mathrm{k}<100$
(D) $0<\mathrm{k}<200$
h. In the signal-flow graph of Fig.5, the number of pairs of non-touching loops is:
(A) 2
(B) 1
(C) 0
(D) 3
i. The Nyquist plot for $G(s)=\frac{5}{s(s-1)}$ shown in Fig. 6 is:
(A) unstable
(B) stable
(C) marginally stable
(D) conditionally stable

j. A mass M initially at rest acted upon by a force $F(t)$ as in Fig. 7 is described by:
(A) $F(t)=M \frac{d v}{d t}+K \int x d t$
(B) $F(t)=M \frac{d^{2} v}{d t^{2}}+K \int v d t$
(C) $F(t)=M \frac{d^{2} x}{d t^{2}}+K v$
(D) $F(t)=M \frac{d^{2} x}{d t^{2}}+K x$

Fig. 7

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.
Q. 2 a. Obtain the transfer function $G(s)=\frac{\theta(s)}{T(s)}$ for the inertia-spring-damper
system of Fig.8. Show that it represents a second-order system.

b. Draw the block-diagram of the basic feedback control system, identifying all signals at the input and output of $\mathrm{G}(\mathrm{s})$ and $\mathrm{H}(\mathrm{s})$. Derive the system characteristic equation.
c. Consider the system with $G(s)=\frac{Y(s)}{R(s)}=\frac{1}{s^{2}+3 s+2}$ to which a standard test input signal $r(t)=5 t u(t)$ is applied. Find the constant, ramp and exponential components of the dynamic response $y(t)$. What will be the steady state response $\mathrm{y}_{\mathrm{ss}}(\mathrm{t})$?
Q. 3 a. State Mason's gain rule for determining the overall system gain from a signal flow graph. Obtain the overall transfer function of Fig. 9 using Mason's gain rule.
b. Draw appropriate block-diagrams to represent:
(i) combining two blocks in cascade.
(ii) moving a summing point that is after a block.
(iii) moving a take-off point that is before a block.
(iv) eliminating a feedback loop.
Q. 4 a. Consider the basic controller block-diagram of Fig.10. Write the expressions for $G(s)$ and obtain the time-response $y(t)$ for various types of controls:
(i) integral
(ii) PI
(iii) PD
(iv) PID
b. Explain briefly the following terms used in characterising a feedback control system:
(i) stability
(ii) disturbance rejection
(iii) steady-state accuracy
(iv) robustness

Fig. 11
Q. 5 a. Using Routh stability criterion, find whether the system with characteristic equation $\Delta(s)=s^{5}+s^{4}+4 s^{3}+24 s^{2}+3 s+63=0$ is stable or not.
b. For the system of Fig.11, determine the peak overshoot when $\alpha=0$ and input is a unit-step function. Determine the rate-feedback constant α that will decrease the peak overshoot to 1.5%.
Q. 6 a. Consider a closed-loop system with $\mathrm{G}(\mathrm{s})=\frac{\mathrm{k}}{\mathrm{s}}, \mathrm{H}(\mathrm{s})=\mathrm{e}^{-\tau_{\mathrm{D}} \mathrm{s}} \approx \frac{2-\mathrm{s}}{2+\mathrm{s}}$. Write the characteristic equation\{sketch the root-locus on a graph sheet\}. Given that the root-locus is a circle. Find the value of k corresponding to the intersection of the locus with the $\mathrm{j} \omega$-axis.
b. A bridged-T network of Fig. 12 is used as a compensator. Derive its transfer function and show that the numerator is of the form $\mathrm{s}^{2}+2 \zeta \omega_{0} \mathrm{~s}+\omega_{0}^{2} \quad$ where $\omega_{0}=\frac{1}{\mathrm{C} \sqrt{\mathrm{R}_{1} \mathrm{R}_{2}}}$ and $\zeta=\sqrt{\frac{\mathrm{R}_{1}}{\mathrm{R}_{2}}}$.

Fig. 12
Q. 7 a. Sketch the Nyquist plot for $\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\frac{1}{\mathrm{~s}(\mathrm{~s}+1)}$ and determine the stability of the system.
b. Draw on a graph sheet the frequency response plot in Nichols coordinate system using the following data:

Frequency, $\omega, \mathrm{rad} / \mathrm{s} \Rightarrow$	0.2	0.5	0.78	1.25	2.2	3.0
Gain, $\mathrm{dB} \Rightarrow$	15	5	0	-7	-15	-21
Phase, $\mathrm{deg} \Rightarrow$	-110	-120	-140	-160	-180	-190

Determine the gain-crossover frequencies, phase-crossover frequencies, phase-margin and gain-margin.
Q. 8 a. Draw the circuit of a lead compensator using opamp satisfying $D(s)=\frac{16(s+1)}{(s+6)}$. Calculate the values of the circuit elements.
b. Explain how the use of digital control (i.e. use of digital computer as a compensator device) overcomes limitations of analog control.
c. What is robust control system?
Q. 9 a. Draw Bode plot on a semilog graph sheet for the system $\mathrm{G}(\mathrm{s})=\frac{9.7}{\mathrm{~s}(0.046 \mathrm{~s}+1)}$ with $\omega_{\mathrm{ref}}=1 \mathrm{rad} / \mathrm{s}$. Find the phase-margin.
b. Discuss the effects and limitations of phase lead compensation

