Paper ID [EC202]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - 4th)

ANALOG ELECTRONICS (EC - 202)

Time: 03 Hours Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

01)

 $(10 \times 2 = 20)$

- a) Define T model of a Bipolar Transistor.
- b) What is an Oscillator? How does it differ from an Amplifier?
- c) Which configuration of Bipolar Transistor is called as Emitter follower & why, for what purpose is it used?
- d) What is the use of Bleeder in Zener Voltage Regulator?
- e) What are the different types of configurations used in multistage amplifier circuits?
- f) What is the advantage of Stagger tuned Amplifier?
- g) What is the Miller Effect?
- h) What are the Barkhusain conditions of oscillations in electronic systems? What is their significance?
- i) What are the physical origins of resistances in hybrid-pi model of CE Transistor Amplifier at high frequencies?
- j) Define Line & Load Regulation.

$$(4 \times 5 = 20)$$

- Q2) What are the different types of -ve feedback? Explain each with block diagram.
- Q3) Draw and explain the working of push pull class-B Amplifier. What are its advantages & disadvantages?
- Q4) A CE connected amplifier has $C_{cb} = 5$ pF, $C_{be=12}$ pF, $h_{fe} = 100$, $h_{ie} = 1.5$ k Ω . Find the input capacitance to the circuit for a circuit collector resistance of 12 k Ω .
- Q5) Find (a) feedback ratio (b) feedback factor (c) Voltage gain without feedback (d) Voltage gain with feedback for a circuit given below. Assume transistor $\beta = 200$ and neglect V_{be} .

Q6) Explain how device Capacitances plays dominant role in CE Amplifier in high frequency region.

Section - C

 $(2 \times 10 = 20)$

- Q7) Draw and explain the working of R-C phase shift oscillator and also derive an expression for its frequency of oscillations.
- Q8) In a Transistor Colpitt's oscillator we have $L = 100\mu$ H, $L_{RFC} = 0.6$ mH, $C_1 = 0.001$ μF, $C_2 = 10$ μF. Find (a) operating frequency (b) feedback fraction (c) minimum gain to sustain oscillations & Emitter Resistance if Rc = 2.5 kΩ.
- Q9) Write a note on following:
 - (a) Complimentary symmetry amplifier.
 - (b) Transistor series Regulators.