B. Tech Degree VI Semester (Supplementary) Examination, October 2009

CS/EE 602 DIGITAL SIGNAL PROCESSING

(2006 Scheme)

Time: 3 Hours Maximum Marks: 100

PART A

(Answer all questions)

 $(8 \times 5 = 40)$

- I. a. Discuss the classification of Discrete-Time signals.
 - b. State the initial and final value theorems of Z-transforms.
 - c. Draw the basic butterfly structures for DIT and DIF algorithms.
 - d. Find the DFT of the sequence $x(n) = \{1, 1, 0, 0\}$.
 - e. Compare FIR and IIR filters.
 - f. Realize the second order system.

 $v(n) = 2rCos\theta$ $v(n-1) - r^2v(n-2) + x(n) - rCos\theta$ x(n-1) in direct form-II.

- g. Write short notes on truncation and rounding errors in digital filters.
- h. Write notes on specialized addressing modes for DSP processors.

PART B

 $(4 \times 15 = 60)$

- II. a. What is system function? What is its significance?. (5)
 - b. Obtain the inverse transforms of

(i)
$$Y(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$$
, $ROC|z| > 1$

(ii)
$$Y(z) = \frac{(1-1/2 z^{-1})}{(1-1/4 z^{-2})}, ROC|z| > 1/2$$
 (10)

OR

- III. a. Prove that the response of a LTI discrete time system is the convolution sum of input x(n) and unit sample response h(n). (5)
 - b. The unit sample response and input of a linear shift invariant system is given by
 - $h(n) = 0.5^n U(n-2); \ x(n) = 2^n U(-n-3).$ Find and sketch the output sequence. (10)
- IV. Compute the linear convolution of the two sequences

$$x(n) = \{1, 2, 2, 1\}$$
 and $h(n) = \{1, 2, 3\}$ using DIT-FFT. (15)

OR

V. Compute the eight point circular convolution for the following sequences using DFT (15) $x(n) = \{1,1,1,1,0,0,0,0\}$ $x_2(n) = Sin \frac{3\pi}{8} n, 0 \le n \le 7.$ VI. What is windowing? Explain any one window in detail. (7) . a. b. Realize the following linear phase FIR fitter using direct form with minimum number of delays $h(n) = \{1, 2, 3, 5, 3, 2, 1\}$. (8) VII. Obtain the direct form-II, cascade and parallel form realization for the following (15)system. y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2).With a functional block diagram explain the architecture of TMS 320C4X floating VIII. point processor. (15)OR Explain the effects of coefficient quantization in IX. (15)FIR filters (i)

IIR filters

(ii)