B. Tech. Degree VI Semester (Supplementary) Examination, November 2005

CS/EI/EE 601 DIGITAL SIGNAL PROCESSING

(2002 Admissions)

Time:	3 Hours	Maximum Mark	cs: 100
I	a) b) c)	Explain the different basic properties of discrete system with example. Check the y(n)=nx(n) system are time invariant, Linear as static Explain the classification of discrete time signals. OR	(8) (6) (6)
II	a)	Evaluate the convolution $y(n)=x(n)*h(n)$ of the sequence $x(n) = \{1,1,0,1,1\}$ and	
		$h(n) = \{1, -2, -3, 4\}$	(7)
v	b)	Explain the important properties of the ROC of the z-transform.	(5)
	c)	Determine the causal signals x(n) having z-transform $x(z) = \frac{1}{(1+z^{-1})(1-z^{-1})^2}$	(8)
Ш	a)	Find the convolution of the two signals $x(n) = u(n)$ and $h(n) = a^n u(n)$ ROC	
		$ a <1, n\geq 0.$	(10)
	b)	Explain any five properties of DFT.	(10)
		OR	
ΙV	a)	Find the 4 point DFT of the seg $x(n) = \frac{\cos n\pi}{4}$.	(10)
	b)	Explain the Radix-2 DIT FFT algorithm.	(10)
V	a)	Determine direct form I and II and cascade form for the realization for the transfer	
	ě	$f \wedge \text{ of an FIR system is given by } H(z) = (1 - \frac{1}{4}z^{-1} + \frac{3}{8}z^{-2})(1 - \frac{1}{8}z^{-1} - \frac{1}{2}z^{-2})$	(9)
	b)	Discuss the cascade realisation of FIR system.	(4)
	c)	Design FIR filter using FS method and discuss Cribb's oscillation and how to reduce cribb's oscillations.	(7)
		OR	(7)
		$\begin{cases} -3\pi & 3\pi \end{cases}$	
VI	a)	The desired response of a LPF is $Hd(e^{j\omega}) = \begin{cases} \frac{e^{-j3\omega} - 3\pi}{4} \le \omega \le \frac{3\pi}{4} \\ 0 \frac{3\pi}{4} < \omega \le \pi \end{cases}$	
	•	Determine $H(e^{-j3\omega})$ for M=7 using a Hamming window.	(10)
			` /
	b)	A LPF has the desired response as $Hd(e^{i\omega}) = \begin{pmatrix} e^{-i3\omega} & 0 \le \omega \le \frac{\pi}{2} \\ 0 & \frac{\pi}{2} \le \omega \le \pi \end{pmatrix}$	
		Determine the filter co-efficients h(n) for M=7 using type I frequency sampling techniques.	(10)
		•	

VII a) Compare Butterworth and Chebychev filter. (4)
b) Convert the following analog filter into digital filter using impulse invariant method. (6)

(c) Obtain direct form I and II cascade and parallel form realization for the following system.

$$y(n) = -0.1y(n-1) + 0.2y(n-2) + 3x(n) + 3.6x(n-1) + 0.6x(n-2)$$
OR

VIII a) What is the mapping procedure between S plane and Z plane in the method of mapping of differential? What are its characteristics?

b) Design a Chebychev filter for the following specification.

$$0.8 \le \left| H(e^{j\omega}) \right| \le 1 \qquad 0 \le \omega \le 0.2\pi$$

$$\left| H(e^{j\omega}) \right| \le 0.2 \qquad 0.6\pi \le \omega \le \pi$$

using i) bilinear and (ii) impulse invariant method.

- IX a) Write short notes on:
 - i) Limit cycle oscillations
 - ii) Quantization effecting the computation of DFT. (10)
 - b) Explain the application of DSP in image processing.

OR

- X a) Draw and explain the architecture of a typical DSP processor.
 - b) What are the effects of finite word length in digital filter? Explain the Rounding and Truncation error. (10)

*

(6)

(14)

(10)

(10)