Answer Keys

| $\mathbf{1}$ | B | $\mathbf{2}$ | A | $\mathbf{3}$ | B | $\mathbf{4}$ | C | $\mathbf{5}$ | C | $\mathbf{6}$ | C | $\mathbf{7}$ | A |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{8}$ | D | $\mathbf{9}$ | B | $\mathbf{1 0}$ | A | $\mathbf{1 1}$ | C | $\mathbf{1 2}$ | B | $\mathbf{1 3}$ | D | $\mathbf{1 4}$ | A |
| $\mathbf{1 5}$ | A | $\mathbf{1 6}$ | D | $\mathbf{1 7}$ | C | $\mathbf{1 8}$ | C | $\mathbf{1 9}$ | C | $\mathbf{2 0}$ | D | $\mathbf{2 1}$ | C |
| $\mathbf{2 2}$ | D | $\mathbf{2 3}$ | B | $\mathbf{2 4}$ | B | $\mathbf{2 5}$ | A | $\mathbf{2 6}$ | D | $\mathbf{2 7}$ | A | $\mathbf{2 8}$ | B |
| $\mathbf{2 9}$ | C | $\mathbf{3 0}$ | A | $\mathbf{3 1}$ | D | $\mathbf{3 2}$ | D | $\mathbf{3 3}$ | A | $\mathbf{3 4}$ | D | $\mathbf{3 5}$ | D |
| $\mathbf{3 6}$ | D | $\mathbf{3 7}$ | A | $\mathbf{3 8}$ | C | $\mathbf{3 9}$ | A | $\mathbf{4 0}$ | A | $\mathbf{4 1}$ | B | $\mathbf{4 2}$ | D |
| $\mathbf{4 3}$ | B | $\mathbf{4 4}$ | A | $\mathbf{4 5}$ | B | $\mathbf{4 6}$ | B | $\mathbf{4 7}$ | C | $\mathbf{4 8}$ | B | $\mathbf{4 9}$ | C |
| $\mathbf{5 0}$ | D | $\mathbf{5 1}$ | B | $\mathbf{5 2}$ | B | $\mathbf{5 3}$ | C | $\mathbf{5 4}$ | C | $\mathbf{5 5}$ | C | $\mathbf{5 6}$ | D |
| $\mathbf{5 7}$ | A | $\mathbf{5 8}$ |  | 59 | B | $\mathbf{6 0}$ | D |  |  |  |  |  |  |

## Explanations:-

1. The order of differential equation is two
2. 

$f(t)=\frac{1-\cos 2 t+\cos 2 t}{2}$, then it has $o$ and $\frac{1}{\pi} H z$ frequency component
7. $\left(\frac{1}{3}\right)^{n} u(n) \leftrightarrow \frac{1}{1-\frac{1}{3} z^{-1}}$ $|z|>1 / 3$,
$-\left(\frac{1}{2}\right)^{n} u(-n-1) \leftrightarrow \frac{1}{1-\frac{1}{2} z^{-1}} \quad|z|>1 / 2^{\prime}$,
$\frac{1}{3}<|z|<1 / 2$
8. Since magnitude plot shows both increasing as well as decreasing plot, it is leadlag compensator
9. Since Bandwidth is 10 kHz , thus output power is $10 \times 10^{-11} \times 10 \times 10^{3}=1 \times 10^{-6} \mathrm{~W}$
11. Use $n_{c_{r}}(p)^{r}(q)^{n-r}$ [for any two losses which yield head]

$$
{ }^{10} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{2}\left(\frac{1}{2}\right)^{8}={ }^{10} \mathrm{C}_{2}\left(\frac{1}{2}\right)^{10}
$$

But in present case it is required only for first two tosses. Thus in this case $\frac{1}{2} \cdot \frac{1}{2} \ldots\left(\frac{1}{2}\right) 10$ times
12. Since autocorrelation function and power spectral density bears a Fourier transform relation, then sin c required in frequency domain will five rectangular convolutions in time domain, thus it is a triangular function
13. $f^{\prime}(z)=\left\{\frac{1+c_{0}+z^{-1}}{z}\right\}$
$f^{\prime}(z)=\frac{\left(1+c_{0}\right)+c_{1} z^{-1}}{z}$
$\int f^{\prime}(z)=\frac{d}{d^{2}} z^{2}\left\{\frac{\left(1+c_{0}\right) z+c_{1}}{z^{2}}\right\}=2 \pi i\left(1+c_{0}\right)$
14. Since 12 A current is coming from one source and it is also known that 60 V source is absorbing power i.e. current is flowing inside 60 V source.
$12=x+I \Rightarrow I=12-x$, thus possible option is $(A)$
15. $\quad \mu=\frac{\mathrm{q}}{\mathrm{kT}} \mathrm{D} \Rightarrow\left[\frac{\mu}{\mathrm{D}}\right]=\mathrm{V}^{-1}$
17. $z_{C}=\frac{R_{L} \frac{1}{S C}}{R_{L}+\frac{1}{S C}}$
$z_{C}=\frac{R_{L}}{S C R_{L}+1}$
$\frac{V_{0}(S)}{V_{i}(S)}=\frac{\frac{R_{L}}{S C R_{L}+1}}{\frac{R_{L}}{S C R_{L}}+R}=\frac{R_{L}}{R_{L}+R_{S C R}^{L}+R}=\frac{R_{L}}{S C R R_{L}+R+R_{L}} \Rightarrow R_{L}=R$
18. Use the condition of controllability
20. Apply right hand thumb rule
22. $\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \cdots$
$\sin (x-\pi)=(x-\pi)-\frac{(x-\pi)^{3}}{3!}+\frac{(x-\pi)^{5}}{5!} \cdots$
$-\frac{\sin x}{(x-\pi)}=1-\frac{(x-\pi)^{2}}{3!}+\frac{(x-\pi)^{2}}{5!}-\cdots$
$\Rightarrow \frac{\sin x}{(x-\pi)}=-1+\frac{(x-\pi)^{2}}{3!}$
24. Since it is one-sided Laplace transform
25. (i) $\frac{d y}{y}=\frac{d x}{x} \Rightarrow \ln y=\ln x+C$
$\frac{y}{x}=e^{c} \Rightarrow$ straight line
(ii) $x y=$ constant
(iii) $x^{2}-y^{2}=$ constant
(iv) $x^{2}+y^{2}=$ constant

P-2 $\quad$ Q-3 $\quad \mathrm{R}-3 \quad \mathrm{~S}-1$
36. $[1+z\{\bar{y}+\bar{z}+\bar{y}\}][0+\bar{z}]=1, \quad \bar{z}=1, \quad z=0$
40.

$H\left(e^{j \omega}\right)=e^{-j 2 \omega}-e^{-j 3 \omega}$, It is FIR high pass filter
44. $\omega=1, \mathrm{H}(\mathrm{j})=\left.\frac{-\omega^{2}+1}{-\omega^{2}+2 j \omega+1}\right|_{\omega=1}=0$. Thus output is zero for all sampling frequencies
46. The mean is 3
47. $\mu=\frac{1}{\sqrt{2}}$, efficiency $=\frac{1 / 2}{2+1 / 2}=20 \%$
48. $\quad \mathrm{C}=\mathrm{B} \log _{2}[1+\mathrm{SNR}]$
$\mathrm{C}=\mathrm{Blog} \mathrm{log}_{2}[\mathrm{SNR}]$
$\mathrm{C}^{\prime}=\mathrm{B} \log _{2}[2 \mathrm{SNR}]=\mathrm{B} \log _{2} \mathrm{SNR}+\mathrm{B} \log _{2} 2$
$C^{\prime}=C_{1}+B$
50. $z_{1}=\frac{(100)^{2}}{50}=200, \quad z_{2}=200$
$z^{\prime}=z_{1} \square z_{2}=100$
$z_{\text {in }}=\frac{50 \times 50}{100}=25 \Omega$
59. From the figure $0 \quad 1 \quad 1 \Rightarrow g=P_{1}+P_{2}, \begin{array}{llll}0 & 1 & 1 & d=c+e\end{array}$
$1 \begin{array}{lll}1 & 0 & 1\end{array} 1 \begin{array}{lll}1 & 0 & 1\end{array}$
$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$

