Total No. of Questions-12] [Total No. of Printed Pages -4+2
S.E. (Production/Production S/W/Industrial Engineering) (Second Semester) EXAMINATION, 2010

DESIGN OF MACHINE ELEMENTS
(2003 COURSE)
Time : Three Hours

N.B. :- (i) Answer any three questions from each Section.
(ii) Answers to the two Sections show written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right fichte full marks.
(v) Assume suitable $\mathrm{d} a$ a, if necessary.

* $\int_{\text {SECTION } I}$

1. (a) Explain tharious stages in design of any machine element. [6]
(b) Explain the variation of strain with respect to ductile and britt material.
(c) What are the requisites of Design engineer ?[4]
2. (a). Explain the weighted parameter method for selection of material.
(b) What is design analysis and design synthesis ?
(c) Write a short note on preferred numbers.
3. (a) Explain design procedure for angular
(b) The effective length of hand lever is $\$$. The effective overhang from the Nearest bearing is 150 mm . The lever and shaft is made of alloy steel for which tensile yield strength is $460 \mathrm{~N} / \mathrm{mm}^{2}$. If the maximum fore exerted at Handle is 300 N , design the lever and 4 ft with factor of safety 4.
4. (a) Draw the ne y diagram of knuckle joint.
(b) Design the Cotter joint to transmit a load of 100 kN in tension or compression. Assume the following stresses for socket, spigot and R er :

Allowable tensile stress $=90 \mathrm{~N} / \mathrm{mm}^{2}$
Allowable crushing stress $=170 \mathrm{~N} / \mathrm{mm}^{2}$
(iii) Allowable shear stress $=60 \mathrm{~N} / \mathrm{mm}^{2}$
5. (a) Explain various types of springs with their neat sketch, application advantages.
(b) Compare the weights of equal length of hollow shaft and solid shaft to transmit a given torque for the same maximum stress. The material for both the shaft is same diameter is $2 / 3$ of outside diameter for hollow
(c) Write a short note on Bush type Coupling.

Or
6. (a) Write a short note on Wahl stress facto [6]
(b) Design a helical compression spring for a maximum load of 1200 kN for deflection of 25 m usi the value of spring index as 5. Assume Maximum pe mis rible shear stress for spring material as $400 \mathrm{~N} / \mathrm{mm}^{2}$. Movlus of rigidity can be assumed as $85 \mathrm{GN} / \mathrm{mm}^{2}$.

*SECTION II

7. (a) Compare the ted joints and welded joints.
(b) Draw the different types of thread forms.
(c) The faltying data is given for screw jack.
(i) Sominal diameter of the shaft of screw : 40 mm

Pitch of square threads : 7 mm
(iii) Coefficient of thread friction : 0.15
(iv) Coefficient of collar friction : 0.1
(v) Effective mean diameter of collar : 70 mm

The operator can comfortably exert a force of 150 kN at ravs of 1.2 m to raise the load assuming single start threads. Crete the maximum load can be lifted, the efficiency of screw and the overall efficiency.
[10]
Or
8. (a) Draw the welded joints along with the ex mples.
(b) A steel angle is welded to a steel pite by the filler welds l_{1} and l_{2} of length 200 mm eac he leg size is 10 mm . If the permissible shear stres for the weld is $80 \mathrm{~N} / \mathrm{mm}^{2}$, calculate the luad carryisg capucity of weld connection. [6]
(c). Justify the use of reticula moll lead screw in CNC machine. [4]
9. (a) Define the clutcl. Write a short note on positive Clutch. [6]
(b) A single plat consisting of two pairs of contacting surfaces is required to transmit 40 kW power 1560 r.p.m. The coefficient of friction between the contacting surfaces is 0.3 and the intensity of press re is limited to $0.4 \mathrm{~N} / \mathrm{mm}^{2}$. The outer diameter of iction disk is limited to 300 r.p.m. if the service factor is 1.25 , determine the inner diameter of the friction disk and axial force required to engage the clutch.
10. (a) State the different types of brakes and the explain application of each.
(b) A pivoted double block brake has two shoes each of which sub stand an angle of 120° at center of brake drum. We diameter of the brake drum is 450 mm and the id h the friction lining is 75 mm . The coefficient friction is 0.2 and the maximum intensity of pressure betuee the lining and the brake drum is $0.5 \mathrm{~N} / \mathrm{m}^{2}$, the pivo of each shoe is located in such a manner that the ansult of friction force on shoe about the pivot is Zero. Ass ming that the same actuating force is applied on th shoes, calculate distance of pivot from the axis, brakig orque capacity of brake and pivot reaction.
11. (a) How will you selec oelt from the Manufacturers Catalogue. [6]
(b) An exhaust fin fited with 900 mm diameter pulley is driven by open flat belt from a $30 \mathrm{~kW}, 1000$ r.p.m. electric motor. pulley on the motor shaft 250 mm in diameter and the center distance between the shaft and the motor shaft 15 5 mm . The allowable tensile stress for the belt material
is $2 \mathrm{~N} / \mathrm{mm}^{2}$ and the coefficient of friction between belt and pulley is 0.25 . The density of belt material is $950 \mathrm{~kg} / \mathrm{m}^{3}$. If the width of belt is 100 mm . Determine Thickness of belt, length of belt and initial tension required in the bel (12)

Or

12. (a) State the advantages and disadvantages of fl and V-belt drives.
(b) A rope drive is used to drive to tran mit 260 kW power from a 300 mm pitch diameter pulley rotating at 1000 r.p.m. to 600 mm pitch diameter pulley. (h)pulley groove the angle 45° and the center distance io m. The mass of the rope is 3.2 kg per meter and the coefficient of friction between the rope and the pullers. If the permissible pull for each rope is 2000 N , determine the number of rope required.
