Diplete - CS (NEW SCHEME) - Code: DC61

Subject: OPERATING SYSTEMS & SYSTEMS SOFTWARE

Time: 3 Hours

Max. Marks: 100

JUNE 2010

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions, answer any FIVE Questions, selecting at least TWO questions from

Choose the correct or the best alternative in the following:		(2×10)		
a. Which of the following is a solution to the critical section problem?				
(A) Round Robin algorithm(C) Banker's algorithm	(B) Bakery algorithm(D) Best-fit policy			
b. Which of the following statement	is not true for YACC?			
(A) It is a language processor de(B) It generates a parser	-			
(C) Its full form is Yet Another C	Compiled Compiler (D) It takes input that resemble	es a grammar production		
c. An assembly language is a				
(A) machine dependent, low leve(B) machine independent, low leve(C) machine dependent, high leve(D) machine independent, high leve	vel programming language. el programming language.			
d. Interval between the time of subr	Interval between the time of submission to the time its result become available to user is called			
(A) Waiting time(C) Throughput	(B) Turnaround time(D) Response time			
e. A recursive descent parse is a				
(A) Top-Down parser(B) Bottom-up parser(C) Top-Down parser without ba(D) LALR parser	acktracking			
A program in execution is called				
(A) Process	(B) Instruction			
(C) Procedure	(D) Function			

(B) FIFO

(D) Optimal page replacement

iete-elan.ac.in/qpjun10/DC61.htm

(A) LRU

(C) RLU policy

		(A) ORIGIN <address space=""></address>(C) <symbol>ORIGIN</symbol>	(B) <symbol>ORIGIN<address (<b="" space="">D) None of the above</address></symbol>	>					
	i.	A low cost alternative to processes for certain kinds of concurrent applications are							
		(A) Program (C) Jobs	(B) Threads(D) Events						
	j.	A macro definition consists of							
		(A) macro prototype statement(C) macro pre-processor statements	(B) one or more model statements(D) All of the above						
	PART A Answer at least TWO questions. Each question carries 16 marks.								
Q.2	a.	What is PCB? Briefly explain its various	us components.	(8)					
	b.	. Distinguish time sharing and multiprogramming.		(4)					
	c.	. What are the desirable features of a real-time operating system?		(4)					
Q.3	a.	Which is the most commonly used sch	eduling algorithm, and why?	(4)					
	b.	What is the difference between Least Time to Go (STG) policies in pre-emp	(4)						
	c.	Describe an approach to detect deadle detected? (8)	ock in a system. What are the possible re	ecovery strategies once deadlock is					
Q.4	a.	Explain the difference between							
		(i) Logical and Physical addresses(ii) Internal and external fragmentation	n (8)						
	b.	Given memory partitions of 100 K, 500 K, 200 K, 300 K and 600 K(in order), how would each of the First-fit, Best-fit and Worst-fit algorithms place processes of 212 K, 417 K, 112 K, and 426 K(in order)? Which algorithm makes the most efficient use of memory? (8)							
Q.5	a.	What is a critical-section problem? W must satisfy? (8)	hat are the three requirements that a solut	tion to the critical-section problem					
	b.	Discuss linked and indexed schemes for	or allocating disk space.	(8)					

h. The syntax of the assembler directive ORIGIN is

PART B
Answer at least TWO questions. Each question carries 16 marks.

Q.6	a.	Perform "Top-Down parsing without backtracking" of expression <id>+<id>*<id>* after rewriting the following grammar E:=T+E T</id></id></id>			
		T::=V*T V V::= <id></id>	(10)		
	b.	Explain the similarities and differences between the use of mause of subroutine			
Q.7	a.	Give one example each of linear and non-linear search data's Describe implementation of the three basic operations for each			
	b.	Define a language processor. Describe various types of language	nage processors. (8)		
Q.8	a.	Discuss various categories of assembly language statement.	(5)		
	b.	How literal references are handled in Pass I and Pass II asse	mbler? (5)		
	c.	List the tasks performed by the analysis and synthesis phases	of an assembler.	(6)	
Q.9	a .	What are various parameter-passing mechanisms? Write short note on side effect characteristics and execution efficiency of each. (5)			
	b.	Explain static and dynamic memory allocation models of memory allocation. What is automatic allocation and program controlled allocation? (6)			
	c.	Differentiate between pure and impure interpreters.	(5)		

iete-elan.ac.in/qpjun10/DC61.htm