JUNE 2008

Code: DE05 **Subject: ELECTRICAL ENGINEERING** Time: 3 Hours Max. Marks: 100

NOTE: There are 9	9 (Questions	in	al	l.
--------------------------	-----	------------------	----	----	----

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.

Any re	equired da	ta not ex	plicitly give	n, ma	y be suita	ibly assumed ai	nd stat	ed.
Q.1 following	Choose .	the	correct (2x10)	or	best	alternative	in	the
a.	In ac circ	uit the pr	oduct of vol	tage aı	nd current	is known as		
					(A) Powe	er.		(B)
Re	al power.							
					(C) Resis	stive		
po	wer.	(D) App	parent power	•				
b.	A network (A) Active (C) Resist	e networl	k.	ither v	(B) Pass	current sources sive network. my network.	is calle	ed
c.	The Powe	er- factor	at resonance	e in R-				
Œ	B) Unity.				(A) Zero.			
(1	of Cility.				(C) 0.5			
lag	ging.		(D) 0.5 le	ading	` '			
d.	In an 8 - paths are	– pole w	ave connecte	ed mo	tor armat	ure, the number	of pa	rallel
	(A) 8				(B) 4			
	(C) 2				(D) 1			

(B) Reduce the core losses.

(D) None of these.

e. Transformer core is laminated to (A) Reduce the copper losses.

(C) Reduce the eddy current losses.

	f.		120x f /p.	equency, sp	eed and number (B) $f = 120 \times N$ (D) $N_s = f \times p$	Г _s /р.	s given by	V		
	g.		a starter of an							
ciro		(A) Inserts resistance in rotor circuircuit.			(B) Inserts resistance in stator (C) Applies reduced voltage to					
		tor.			(D) Applie	s reduced	voltage	to		
iron. stamp			e of an induct (B) Mild st		s made of (A) Laminated ca					
		mpings.	(D) Soft w		(C) Silicon	steel				
	Watt hour	Watt hour is the unit of		(A) Electric						
	•		(B) Electric capacity.(D) Electric charge.		(C) Electric					
	j. A battery is a source of(A) DC voltage.(C) 3 \phi AC voltage.				(B) 1	OC voltage.				
		Ans			ut of EIGHT Ques 16 marks.	uestions.				
Q.2	a.	State the i	following: Thevenin's	Theorem (iii)		(ii)	Norton Kirchoft (8)			

b. For the circuit shown in Fig.1, find the current in the load resistance $R_L=18\Omega$ and the voltage across it by Norton's theorem and verify the result by applying Thevenin's Theorem. (8)

- Q.3 a. A series AC circuit connected to 230V, 50Hz mains consists of a non-inductive resistance of 100 Ω and inductance of 100mH and a capacitance of 20μF. Calculate impedance, current, power factor and power.
 (8)
 - b. A balanced star connected load is supplied from a symmetrical three-phase, 400V (line-to-line) supply. The current in each phase is 50A and lags behind the phase voltage by 30°. Find phase voltage, phase impedance and active and reactive power drawn by the load.

 (8)
- Q.4 a. Based on the core construction, explain the two types of transformer. (8)
 - b. The emf per turn of 3300 /395, 50Hz single- phase core type transformer is 7.5V, if the maximum flux density is 1 tesla, then find a suitable number of primary and secondary turns and the net cross-sectional area of the core.

- Q.5 a. Explain, the process of commutation in a dc machine. Explain what are inter-poles and why they are required in a dc machine.

 (6)
 - b. A 6- pole lap wound series motor has 60 slots; each slot consists of 12 conductors. If the armature current is 50 A, calculate the total torque in Nw -m. Flux per pole is 20 X 10⁻³ wb.
 - c. Give reasons, why, starters are required for starting a motor. (6)
- Q.6 a. Explain capacitor start and capacitor run single- phase induction motor. (8)
 - b. Explain the term slip in an induction motor. (4)
 - c. A 12 pole, 50 Hz induction motor is running at 450 rpm. Calculate the % slip of the motor on account of forward field. (4)
- Q.7 a. What are the disadvantages of low power factor? How can it be improved? (8)
 - b. Give reasons, why the following motors are used in the particular applications indicated against them. Synchronous motors power-factor improvement, DC shunt motors lathes, DC series motors- lifts and cranes, Cumulative compound motor rolling mills. (8)
- Q.8 a. What are the advantages and disadvantages of high voltage DC transmission? (8)
 - b. A 100 MW power station delivers 100MW for 2 hours, 50 MW for 6 hours and is shut down for rest of each day. It is also shut down for maintenance for 45 days each year. Calculate its annual load factor. (8)
- Q.9 a. State a few applications of solar energy. Also explain the structure of a solar photovoltaic cell. (2+6)

b. Write a note on biofuels. (8)