

BACHELOR IN COMPUTER APPLICATIONS

Term-End Examination

December, 2007

CS-60: FOUNDATION COURSE IN MATHEMATICS IN COMPUTING

Time: 3 hours Maximum Marks: 75

Note: Question No. 1 is **compulsory**. Attempt any **two** questions from Questions No. 2 to 5.

1. (a) Find without expanding the value of

- (b) Find the value of $\underset{x\to\infty}{Lt} \frac{\sin x}{x}$.
- (c) Find the square root of 'i'.
- (d) Prove that [f(x) + f(-x)] is an even function and that [f(x) f(-x)] is an odd function.
- (e) Find $\frac{dy}{dx}$, when $y = \cos(x + y)$.
- (f) If z is the product of two complex numbers z_1 and z_2 , prove that

$$|z| = |z_1| |z_2|$$

and Arg $z = \text{Arg } z_1 + \text{Arg } z_2$

(g) Prove that

$$\int_{-a}^{+a} f(x) dx = 2 \int_{0}^{a} f(x) dx, \text{ if } f(x) = f(-x).$$

- (h) Find the derivative of $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ w.r.t. $\tan^{-1} x$.
- (i) Find $Lt (1 + x)^{1/x}$
- (j) Obtain the equation of the tangent to the circle $x^2 + y^2 = a^2$ at (x_1, y_1) .
- (k) If the extremities of a focal chord of the parabola $y^2 = 4ax$ are $\left(at_1^2, 2at_1\right)$ and $\left(at_2^2, 2at_2\right)$, then prove that $t_1t_2 = -1$.
- (l) Prove that the equation $x^2 + 6xy + 9y^2 + 4x + 12y 5 = 0$

- represents a pair of straight lines.

- (m) Find the equation of the plane passing through the point (3, 2, -1) and the intersection of the planes 2x + y + 2z = 9 and 4x 5y 4z = 1.
 - (n) For any two sets A and B, prove that
 - (i) $A \cup A = A$
 - (ii) $A \cup B = B \cup A$
 - (o) For a, b, c being non-zero real numbers, prove that

$$(b + c) (c + a) (a + b) > 8abc$$

 $3 \times 15 = 45$

2. (a) Find the ranges of x, where the function

$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

increases with \boldsymbol{x} and decreases with \boldsymbol{x} .

(b) Find the distance of the point (1, -2, 3) from the plane x - y + z = 5 measured parallel to the line

$$\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}.$$

(c) For any three complex numbers \mathbf{z}_1 , \mathbf{z}_2 , \mathbf{z}_3 , prove that

$$z_1 \operatorname{Im} (\bar{z}_2 z_3) + z_2 \operatorname{Im} (\bar{z}_3 z_1) + z_3 \operatorname{Im} (\bar{z}_1 z_2) = 0 5 \times 3 = 15$$

- 3. (a) Find $\frac{dy}{dx}$, when $y = \tan^{-1} \frac{\cos x + \sin x}{\cos x \sin x}$.
 - (b) Evaluate

$$\int \frac{\tan x \, dx}{\sqrt{a + b \tan^2 x}}$$

(c) Solve by Cardano's method the cubic equation

$$x^3 - 3x + 1 = 0$$

4. (a) If $I_n = \int_{0}^{\pi/2} \cos^n x \, dx$,

then prove that,

$$I_{n} = \frac{n-1}{n} I_{n-2}$$

(b) Obtain the equation of the pair of straight lines passing through the point (2, 3) and perpendicular to the pair of straight lines represented by

$$3x^2 - 8xy + 5y^2 = 0.$$

(c) Solve the biquadratic equation

$$x^4 - 3x^3 + 3x^2 - 3x + 2 = 0$$

given that one solution is x = i.

 $5 \times 3 = 15$

- 5. (a) Find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ in the first quadrant bounded by the co-ordinate axes.
 - (b) Find the condition that the two spheres $x^2 + y^2 + z^2 + 2ux + 2vy + 2wz + d = 0$ and $x^2 + y^2 + z^2 + 2u'x + 2v'y + 2w'z + d' = 0$ cut each other orthogonally.
 - (c) Identify the surfaces represented by the following equations and draw rough sketches of the same :

(i)
$$x^2 + y^2 = 16$$

(ii)
$$y^2 + z^2 = ax$$

$$5+4+(3\times2)=15$$