n. 5913-08.

(REVISED COURSE)

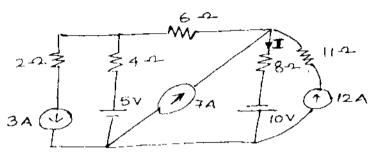
RC-8759

5 5

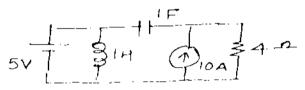
5

5

10

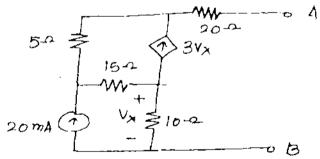

10

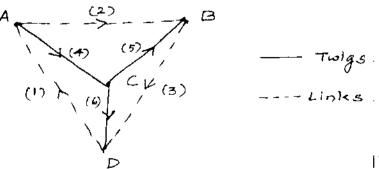
(3 Hours)


[Total Marks: 100

.: (1) Question No.1 is compulsory.

- (2) Attempt any four questions out of the remaining six questions.
- (3) Assume any suitable data, if required.
- (4) Figures to the right indicate full marks.
- 3) Find condition of reciprocity for open-circuit impedance parameters.
- b) For the network shown determine the current 'I'.

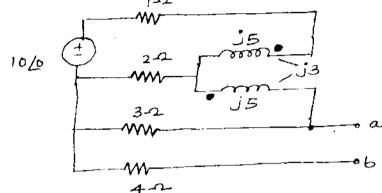

c) For a given network determine possible no. of trees.


d) Test whether the polynomial P(s) is Hurwitz or not—

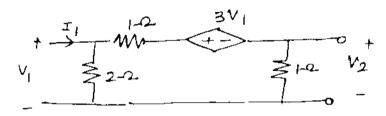
$$P(s) = s^6 + 6 s^4 + 4 s^2 + 2$$

a) Obtain Thevenin's equivalent circuit for the given network.

b) The oriented graph of a network is shown in figure.
Write (i) incidence matrix (ii) f-cutset matrix (iii) f-tieset matrix.


TURN OVER

3. (a) The transform voltage V(s) of a network is given by :-


$$V(s) = \frac{3s}{(s+2)(s^2+2s+2)}$$

Plot its pole-zero diagram and hence obtain V(t).

(b) Determine the voltage V_{ab} across the terminals a, b of the network shown.

4. (a) For the given network determine transmission parameters and hence determine Y-parameters.

- (b) Write short note on initial conditions and their singificance in network analysis.
- 5. (a) Using Mesh Analysis Find V_x 5. (b) Using Mesh Analysis Find V_x 100

 1A

 100

 1A

 100

 1A

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

 100

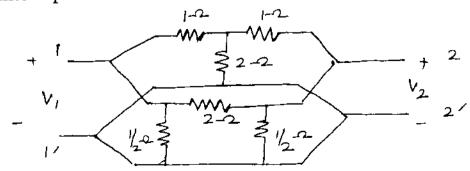
 100

 100

 100

 100

 100


 100

 100

 100

 100

 10
 - (b) Determine Y-parameters of the network.

a) In

5913-

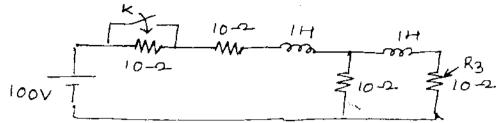
n ha t

o) In

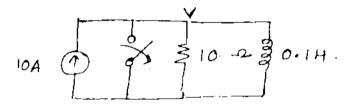
V,

a) A

De


b) Te

etwork


hence

ce in

3) In the network shown below switch k is closed at t=0, a steady state 15 having previously existed. Find the current in the resistor R_3 for t>0.

ib) In the given circuit s/w k is opened at t=0. Find the values of t=0. V, t=0, t=0.

a) A designer requires the RC network with following data.

12

(i) Impedance function has simple poles at -2, -6.

(ii) It has simple zero at -3 and -7.

(iii) $z(0) = 20 \Omega$.

Determine Foster I and II forms.

b) Test whether following functions are positive real functions—

8

(i)
$$Y_1(s) = 5 \frac{s^2 + 2s + 1}{s^3 + 2s^2 + 2s + 40}$$

(ii)
$$Y_2(s) = \frac{s^3 + 5s}{s^4 + 2s^2 + 1}$$
.

-----S-----