SEBIO-MER Sem. ID Dec. 2010 . SUB: Electrical Network Anlog as 345 GT-6262 159 2nd half-Exam 10-Mine (a)

Con. 6009-10.

(3 Hours)

[Total Marks: 100

N.B. (1) Question No. 1 is compulsory.

- (2) Attempt any four questions from remaining six questions.
- (3) Assume suitable data if required.
- 1. (a) Draw the dual of the network shown in figure.

5

(b) The reduced incidence matrix of an oriented graph is :

5

$$\mathbf{A} = \left[\begin{array}{cccccc} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & -1 \\ -1 & 0 & 0 & 0 & 1 \end{array} \right]$$

Draw oriented graph and how many trees are possible for this graph.

(c) Find the voltage Vab in the network shown :

5

(d) Find V_{TH} and R_{TH} between points A and B in figure.

5

2. (a) Determine current I2 in the network shown in figure by using superposition principle. 10

[TURN OVER

(b) Find the nodal voltages in the circuit shown in figure.

3. (a) Find the nodal voltage in the circuit shown.

- (b) (i) Define following terms :-
 - (1) Gain margin
 - (2) Phase margin
 - (3) Gain crossover frequency.
 - (ii) Write short note on significance of initial condition.

4. (a) In the network shown in figure switch is opened at t = 0. Steady state condition 10 is achived before t = 0 find i(t).

(b) Find the value of current l_3 in the network shown in figure.

10

10

6

4

10

3

Con. 6009-GT-6262-10.

5. (a) Find the transmission parameters for the two port network shown in figure. 10

(b) Determine Z and Y parameters of the network shown in figure.

6. (a) Define and with suitable example differentiate between :--

10

10

- (i) Tree and Cotree
- (ii) F-cutset matrix and Tieset matrix
- (iii) Planer and non-planner graph.
- (b) Obtain incidence matrix Tieset matrix and f-cutset matrix for the graph shown. 10

7. (a) Test whether the following polynomial is Hurwitz:-

10

- (i) $P(s) = s^4 + s^3 + 3 s^2 + 2s + 12$
- (ii) $P(s) = s^4 + s^3 + 2s^2 + 3s + 2$
- (b) Realize Foster I and Cauer I forms of RC impedance :

10

$$Z(s) = \frac{s+4}{(s+2)(s+6)}$$