1/7/12 Code: A-20 ## AMIETE - ET (OLD SCHEME) | Code: AE15 Time: 3 Hours | | Subject: COM | Subject: COMMUNICATION ENGINEERING
Max. Marks: 100 | | | |--------------------------|--|--|---|--|--| | Time | JUNE | 2010 | Max. Marks. 100 | | | | • Q a • O | nswer book supplied and nov
ut of the remaining EIGHT (| carries 20 marks. Answer to Q.1 mu | | | | | Q.1 | Choose the correct or the | best alternative in the following: | (2×10) | | | | a. | . The autocorrelation function | n of white noise is | | | | | | (A) Gaussian(C) Sinusoidal | (B) Constant(D) A delta function | | | | | b. | The channel capacity under the Additive White-Gaussian noise environment for a discrete memoryless channel with bandwidth of 4 MHz and SNR of 31 is | | | | | | | (A) 20 Mbps
(C) 124 Mbps | (B) 40 Mbps (D) 10 Mbps. | | | | | C. | An image uses 512×512 picture elements. Each of the picture elements can take any of the 8 distinguishable intensity levels. The maximum Entropy in the above image will be | | | | | | | (A) 262144 bits (C) 32768 bits | (B) 784332 bits (D) 64000 bits | | | | | d. | Aperture effect distortion is related with | | | | | | | (A) Ideal Impulse-train samp(C) Flat-top sampling | (B) Natural sampling (D) Pulse-width Modulation | | | | | e. | In a block code, for correcting t errors, the Hamming distance, d_{min} , should satisfy: | | | | | | | (A) $t \le d_{min}$
(C) $2t+1 \le d_{min} \le 2t+2$ | (B) $d_{min} \le t \le d_{min} + 2$
(D) $2t \le d_{min} \le 2t + 1$ | | | | | f. | The Ring Modulator is used for the generation of | | | | | | | (A) SSB-SC signal(C) FM signal | (B) DSB-SC signal(D) AM signal | | | | $\boldsymbol{g}.\;$ In a stereophonic FM broadcasting system, the $\;$ pilot carrier frequency is 1/3 1/7/12 Code: A-20 | | (A) 15 kHz
(C) 10.7 MHz | (B) 75 kHz
(D) 19 kHz | | | |------|--|--|--|--| | h. | The COHO in MTI radar operates at the | | | | | | (A) intermediate frequency(C) received frequency | (B) transmitted frequency(D) pulse repetition frequency | | | | i. | Equalizing pulses in TV are sent during | | | | | | (A) Horizontal blanking(C) the serrations | (B) Vertical blanking(D) the horizontal retrace | | | | j. | An FM signal with a modulation index m_f is passed through a frequency tripler. The wave in the output of tripler will have a modulation index of | | | | | | (A) $m_f/3$ | (B) <i>m_f</i> /9 | | | | | (C) m_f | (D) $3 m_f$ | | | | | Ans | wer any FIVE Questions out of EIGHT Questions
Each question carries 16 marks. | s. | | | Q 2. | a. Derive an expression Amplifier. | n for the Equivalent noise resistance at the input | of the first stage in a two-stage (8) | | | | b. Find the mathematical exp | ression for representation of narrowband noise. | (8) | | | Q 3. | a. Make a block diagram of phase-shift method of SSB generation to generate the Upper Side Band and write the mathematical expression for a USB-SSB signal. Assume modulating signal is $m(t)$. (8) | | | | | | b. Calculate the percentage modulated to a depth of (a | power saving when the carrier and one of the sideband 100% (b) 50%. | ds are suppressed in an AM wave (8) | | | Q 4. | a. What will happen if a PM signal is received by an FM receiver and vice-versa? Also describe the need of pre-emphasis and de-emphasis in an FM system. | | | | | | capacitor reactance obtain | Fa basic reactance modulator for the generation of FM hable from a reactance FET whose $g_{\rm m}$ is 12 milli-Sieme of the reactance of the gate-to-drain capacitor | ns. Assume that the gate-to-source | | | Q5. | a. Derive the expression for the PCM system. | ne signal-to-quantization noise ratio in a | (8) | | | | b. Describe the working of a amplitude A and frequence | Delta-Modulator and derive the condition to avoid the y f. | slope-overload error for sinusoid of (8) | | below: 2/3 iete-elan.ac.in/qpjun10/AE15.htm a. There are 8 possible messages $\ensuremath{m_1}$ to $\ensuremath{m_8}$ with probabilities as given **Q6.** 1/7/12 Code: A-20 Recovery of original signal from the samples Message m_1 mз m_5 m_7 m_2 m_4 m_6 m_8 **Probability** 1/8 1/2 1/8 1/16 1/16 1/16 1/32 1/32 Generate a code for these messages using Shannon-Fano Algorithm. **(8)** b. Describe the Hamming Code in brief. **(8) Q7.** a. Describe the operation of a CW Doppler radar. Can we use a CW radar for range measurement? Discuss. **(8)** b. Write a short note on phased array radar. **(8) Q8.** a. Make a composite TV video waveform at the end of an odd field and explain it. **(8)** b. Write a note on colour transmission and reception in a TV system. **(8) Q9.** Write short notes on: (i) Spectrum and bandwidth of FM signal. Adaptive delta-Modulation. (ii) Channel capacity of a Gaussion channel. (iii) (4×4) (iv)