1/7/12 Code: A-20

AMIETE - ET (OLD SCHEME)

Code: AE15 Time: 3 Hours		Subject: COM	Subject: COMMUNICATION ENGINEERING Max. Marks: 100		
Time	JUNE	2010	Max. Marks. 100		
• Q a • O	nswer book supplied and nov ut of the remaining EIGHT (carries 20 marks. Answer to Q.1 mu			
Q.1	Choose the correct or the	best alternative in the following:	(2×10)		
a.	. The autocorrelation function	n of white noise is			
	(A) Gaussian(C) Sinusoidal	(B) Constant(D) A delta function			
b.	The channel capacity under the Additive White-Gaussian noise environment for a discrete memoryless channel with bandwidth of 4 MHz and SNR of 31 is				
	(A) 20 Mbps (C) 124 Mbps	(B) 40 Mbps (D) 10 Mbps.			
C.	An image uses 512×512 picture elements. Each of the picture elements can take any of the 8 distinguishable intensity levels. The maximum Entropy in the above image will be				
	(A) 262144 bits (C) 32768 bits	(B) 784332 bits (D) 64000 bits			
d.	Aperture effect distortion is related with				
	(A) Ideal Impulse-train samp(C) Flat-top sampling	(B) Natural sampling (D) Pulse-width Modulation			
e.	In a block code, for correcting t errors, the Hamming distance, d_{min} , should satisfy:				
	(A) $t \le d_{min}$ (C) $2t+1 \le d_{min} \le 2t+2$	(B) $d_{min} \le t \le d_{min} + 2$ (D) $2t \le d_{min} \le 2t + 1$			
f.	The Ring Modulator is used for the generation of				
	(A) SSB-SC signal(C) FM signal	(B) DSB-SC signal(D) AM signal			

 $\boldsymbol{g}.\;$ In a stereophonic FM broadcasting system, the $\;$ pilot carrier frequency is

1/3

1/7/12 Code: A-20

	(A) 15 kHz (C) 10.7 MHz	(B) 75 kHz (D) 19 kHz		
h.	The COHO in MTI radar operates at the			
	(A) intermediate frequency(C) received frequency	(B) transmitted frequency(D) pulse repetition frequency		
i.	Equalizing pulses in TV are sent during			
	(A) Horizontal blanking(C) the serrations	(B) Vertical blanking(D) the horizontal retrace		
j.	An FM signal with a modulation index m_f is passed through a frequency tripler. The wave in the output of tripler will have a modulation index of			
	(A) $m_f/3$	(B) <i>m_f</i> /9		
	(C) m_f	(D) $3 m_f$		
	Ans	wer any FIVE Questions out of EIGHT Questions Each question carries 16 marks.	s.	
Q 2.	a. Derive an expression Amplifier.	n for the Equivalent noise resistance at the input	of the first stage in a two-stage (8)	
	b. Find the mathematical exp	ression for representation of narrowband noise.	(8)	
Q 3.	a. Make a block diagram of phase-shift method of SSB generation to generate the Upper Side Band and write the mathematical expression for a USB-SSB signal. Assume modulating signal is $m(t)$. (8)			
	b. Calculate the percentage modulated to a depth of (a	power saving when the carrier and one of the sideband 100% (b) 50%.	ds are suppressed in an AM wave (8)	
Q 4.	 a. What will happen if a PM signal is received by an FM receiver and vice-versa? Also describe the need of pre-emphasis and de-emphasis in an FM system. 			
	capacitor reactance obtain	Fa basic reactance modulator for the generation of FM hable from a reactance FET whose $g_{\rm m}$ is 12 milli-Sieme of the reactance of the gate-to-drain capacitor	ns. Assume that the gate-to-source	
Q5.	a. Derive the expression for the PCM system.	ne signal-to-quantization noise ratio in a	(8)	
	b. Describe the working of a amplitude A and frequence	Delta-Modulator and derive the condition to avoid the y f.	slope-overload error for sinusoid of (8)	

below:

2/3

iete-elan.ac.in/qpjun10/AE15.htm

a. There are 8 possible messages $\ensuremath{m_1}$ to $\ensuremath{m_8}$ with probabilities as given

Q6.

1/7/12 Code: A-20

Recovery of original signal from the samples

Message m_1 mз m_5 m_7 m_2 m_4 m_6 m_8 **Probability** 1/8 1/2 1/8 1/16 1/16 1/16 1/32 1/32 Generate a code for these messages using Shannon-Fano Algorithm. **(8)** b. Describe the Hamming Code in brief. **(8) Q7.** a. Describe the operation of a CW Doppler radar. Can we use a CW radar for range measurement? Discuss. **(8)** b. Write a short note on phased array radar. **(8) Q8.** a. Make a composite TV video waveform at the end of an odd field and explain it. **(8)** b. Write a note on colour transmission and reception in a TV system. **(8) Q9.** Write short notes on: (i) Spectrum and bandwidth of FM signal. Adaptive delta-Modulation. (ii) Channel capacity of a Gaussion channel. (iii)

 (4×4)

(iv)