

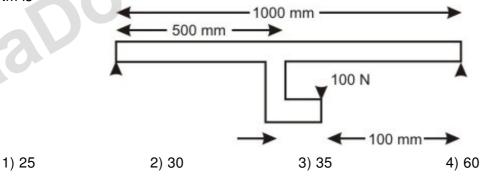
Mechanical Engineering - 2007

Full Paper

- 1. The minimum value of function $y = x^2$ in the interval [1, 5] is
 - 1) 0

2) 1

- 3) 25
- 4) undefined
- 2. If a square matrix A is real and symmetric, then the eigen values
 - 1) are always real
 - 2) are always real and positive
 - 3) are always real and non-negative
 - 4) occur in complex conjugate pairs
- 3. If φ (x, y) and Ψ (x, y) are functions with continuous second derivatives, then φ (x, y) + Ψ (x, y) can be expressed as an analytic function of x + iy (i = $\sqrt{-1}$), when
 - 1) $(\partial \phi / \partial x) = -(\partial \Psi / \partial x)$; $(\partial \phi / \partial y) = (\partial \Psi / \partial y)$
 - 2) $(\partial \phi/\partial y) = -(\partial \Psi/\partial x)$; $(\partial \phi/\partial x) = (\partial \Psi/\partial y)$
 - 3) $(\partial^2 \varphi / \partial x^2) + (\partial^2 \varphi / \partial y^2) = (\partial^2 \Psi / \partial x^2) + (\partial^2 \Psi / \partial y^2) = 1$
 - 4) $(\partial \varphi / \partial x) + (\partial \varphi / \partial y) = (\partial \Psi / \partial x) + (\partial \Psi / \partial y) = 0$
- 4. The partial differential equation


$$(\partial^2 \phi/\partial x^2) + (\partial^2 \phi/\partial y^2) + (\partial \phi/\partial x) + (\partial \phi/\partial y) = 0 \text{ has}$$

- 1) degree 1 order 2
- 2) degree 1 order 1
- 3) degree 2 order 1
- 4) degree 2 order 2
- 5. Which of the following relationships is valid only for reversible processes undergone by a closed system of simple compressible substance (neglect changes in kinetic and potential energy?
 - 1) $\delta Q = dU + \delta W$
 - 2) TdS = dU + pdV
 - 3) $TdS = dU + \delta W$
 - 4) $\delta Q = dU + pdV$
- 6. Water has a critical specific volume of 0.003155 m³/kg. A closed and rigid steel tank of volume 0.025 m³ contains a mixture of water and steam at 0.1 MPa. The mass of the mixture is 10 kg. The tank is now slowly heated. The liquid level inside the tank
 - 1) will rise
 - 2) will fall

- 3) will remain constant
- 4) may rise or fall depending on the amount of heat transferred
- 7. Consider an incompressible laminar boundary layer flow over a flat plate of length L, aligned with the direction of an oncoming uniform free stream. If F is the ratio of the drag force on the front half of the plate to the drag force on the rear half, then
 - 1) F < 1/2
 - 2) F = 12
 - 3) F = 1
 - 4) F > 1
- 8. In a steady flow through a nozzle, the flow velocity on the nozzle axis is given by $v = u_0$ (1 + 3x/L) i, where x is the distance along the axis of the nozzle from its inlet plane and L is the length of the nozzle. The time required for a fluid particle on the axis to travel from the inlet to the exit plane of the nozzle is
 - 1) L/u_0
 - 2) (L/3u₀) ln 4
 - 3) $L/4u_0$
 - 4) $L/2.5u_0$
- 9. Consider steady laminar incompressible axi-symmetric fully developed viscous flow through a straight circular pipe of constant cross- sectional area at a Reynolds number of 5. The ratio of inertia force to viscous force on a fluid particle is
 - 1)5

- 2) 1/5
- 3) 0

- 4) ∞
- 10. In a simply-supported beam loaded as shown below, the maximum bending moment in Nm is

- 11. A ball bearing operating at a load F has 8000 hours of life. The life of the bearing, in hours, when the load is doubled to 2F is
 - 1) 8000
- 2) 6000
- 3) 4000
- 4) 1000
- 12. During inelastic collision of two particles, which one of the following is conserved?
 - 1) total linear momentum only
 - 2) total kinetic energy only

- 3) both linear momentum and kinetic energy
- 4) neither linear momentum nor kinetic energy
- 13. A steel rod of length L and diameter D, fixed at both ends, is uniformly heated to a temperature rise of ΔT . The Young's modulus is E and the coefficient of linear expansion is α . The thermal stress in the rod is
 - 1) 0
 - 2) αΔΤ
 - 3) $E \alpha \Delta T$
 - 4) $E \alpha \Delta T L$
- 14. For an under damped harmonic oscillator, resonance
 - 1) occurs when excitation frequency is greater than undamped natural frequency
 - 2) occurs when excitation frequency is less than undamped natural frequency
 - 3) occurs when excitation frequency is equal to undamped natural frequency
 - 4) never occurs
- 15. If a particular Fe-C alloy contains less than 0.83% carbon, it is called
 - 1) high speed steel
 - 2) hypoeutectoid steel
 - 3) hypereutectoid steel
 - 4) cast iron
- 16. Which of the following engineering materials is the most suitable candidate for hot chamber die casting?
 - 1) low carbon steel
 - 2) titanium
 - 3) copper
 - 4) tin
- 17. Which one of the following is a solid state joining process?
 - 1) gas tungsten arc welding
 - 2) resistance spot welding
 - 3) friction welding
 - 4) submerged arc welding
- 18. In orthogonal turning of a low carbon steel bar of diameter 150 mm with uncoated carbide tool, the cutting velocity is 90 m/min. The feed is 0.24 mm/ rev and the depth of cut is 2 mm. The chip thickness obtained is 0.48 mm. If the orthogonal rake angle is zero and the principal cutting edge angle is 90°, the shear angle in degree is
 - 1) 20.56
 - 2) 26.56
 - 3) 30.56

- 4) 36.56
- 19. Which type of motor is NOT used in axis or spindle drives of CNC machine tools?
 - 1) induction motor
 - 2) dc servo motor
 - 3) stepper motor
 - 4) linear servo motor
- 20. Volume of a cube of side 'I and volume of a sphere of radius 'r' are equal. Both the cube and the sphere are solid and of same material. They are being cast. The ratio of the solidification time of the cube to the same of the sphere is
 - 1) $(4\pi/6)^3 (r/l)^6$
 - 2) $(4\pi/6) (r/l)^2$
 - 3) $(4\pi/6)^2 (r/l)^3$
 - 4) $(4\pi/6)^2 (r/l)^4$
- ineers.com 21. If $y = x + \sqrt{x + \sqrt{x + \sqrt{x + \cdots}}}$, then y(2) =
 - 1) 4 or 1
 - 2) 4 only
 - 3) 1 only
 - 4) undefined
- 22. The area of triangle formed by the tips of vectors $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$ and $\overline{\mathbf{c}}$ is
 - 1) $1/2(\overline{a} \overline{b})$ $(\overline{a} \overline{c})$
 - 2) $1/2 \mid (\bar{a} \bar{b}) \times (\bar{a} \bar{c}) \mid$
 - 3) $1/2 | \overline{a} \times \overline{b} \times \overline{c} |$
 - 4) $1/2 (\overline{a} \times \overline{b}) . \overline{c}$
- 23. The solution of $dy/dx = y^2$ with initial value y (0) = 1 is bounded in the interval
 - 1) $\infty \le x \le \infty$
 - 2) $\infty \le x \le 1$
 - 3) x < 1, x > 1
 - 4) $-2 \le x \le 2$
- 24. If F(s) is the Laplace transform of function f(t), then Laplace transform of $\int f(\tau) d\tau$ is
 - 1) (1/s) F(s)
 - 2) (1/s) F(s) f(0)
 - 3) sF(s) f(0)

4)	r	_	/ _ \	_1_
4)	1	Г	5	us

25.		2π	
	A calculator has accuracy up to 8 digits after decimal place. The value of		sin x dx when
		0	

evaluated using this calculator by trapezoidal method with 8 equal intervals, to 5 significant digits is

- 1) 0.00000
- 2) 1.0000
- 3) 0.00500
- 4) 0.00025
- 26. Let X and Y be two independent random variables. Which one of the relations between ers.com expectation (E), variance (Var) and covariance (Cov) given below is FALSE?
 - 1) E(XY) = E(X) E(Y)
 - 2) Cov (X, Y) = 0
 - 3) Var(X + Y) = Var(X) + Var(Y)
 - 4) $E(X^2 Y^2) = (E(X))^2 (E(Y))^2$

27.
$$\lim_{x \to 0} \frac{e^{x} - \left(1 + x + \frac{x^{2}}{2}\right)}{x^{3}} =$$
1) 0 2) 1/6 3) 1/3 4) 1

- 28. The number of linearly independent eigenvectors of $\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}$ is
 - 2) 1 3) 2 1) 0 4) infinite
- 29. The inlet angle of runner blades of a Francis turbine is 90°. The blades are so shaped that the tangential component of velocity at blade outlet is zero. The flow velocity remains constant throughout the blade passage and is equal to half of the blade velocity at runner inlet. The blade efficiency of the runner is
 - 2) 50% 1) 25% 3) 80% 4) 89%
- 30. The temperature distribution within the thermal boundary layer over a heated isothermal flat plate is given by $(T - T_w)/(T_\infty - T_w) = 3/2(y/\delta_t) - (1/2)(y/\delta_t)^3$, where T_w and T_∞ are the temperatures of plate and free stream respectively, and y is the normal distance measured from the plate. The local Nusselt number based on the thermal boundary layer thickness δ_t is given by
 - 2) 1.50 3) 2.0 4) 4.64 1) 1.33
- 31. In a counter flow heat exchanger, hot fluid enters at 60°C and cold fluid leaves at 30°C. Mass flow rate of the hot fluid is 1 kg/s and that of the cold fluid is 2 kg/s. Specific heat of the hot fluid is 10 kJ/kgK and that of the cold fluid is 5 kJ/kgK. The Log Mean Temperature

be determined from Assume the plate exchange with the has a total surfactorial is 2.5 kg.	om observations of the temperature to be see surroundings neglice area of 0.1 m ² at J/kgK. The convective	e change in plate ter uniform at any insta gible. The ambient to nd a mass of 4 kg. e heat transfer co-eff	plate suspended in still air nperature with time as it count of time and radiation emperature is 25°C, the part of	ools. heat olate olate stant
1) 200	2) 20	3) 15	4) 10	
turbine works. Th		del is half of that of t	that under which the full s he full scale turbine. If N is be	- 4
1) N/4	2) N/2	3) N	4) 2N	
respectively. The		0.001 m^3 . If the spe	ne are 250 mm and 200 cific heat ratioγ = 1.4, the	
temperature und bulb) and the inte W/m ² K respecti	er these conditions is ernal and external sur	10.17 °C. The outsiface heat transfer cowall has a thermal	5°C (wet bulb). The dew position de temperature is -23°C efficients are 8 W/m ² K and conductivity of 1.2 W/mK, and ensation is	(dry d 23
coil with an enthat The air leaves the grams/kg of dry a	alpy of 85 kJ/kg of dry ne coil with an enthal	y air and a humidity op py of 43 kJ/kg of dry water leaves the co	rs a cooling and dehumidif ratio of 19 grams/kg of dry air and a humidity ratio I with an enthalpy of 67 k	air.
2) 123.8				
3) 128.2				
		6/19		

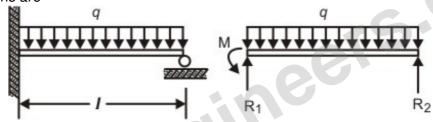
4) 45

Difference (LMTD) for the heat exchanger in °C is 2) 30

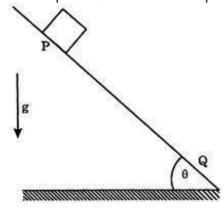
1) 15

- 4) 159.0
- 37. A heat transformer is a device that transfers a part of the heat, supplied to it at an intermediate temperature, to a high temperature reservoir while rejecting the remaining part to a low temperature heat sink. In such a heat transformer, 100 kJ of heat is supplied at 350 K. The maximum amount of heat in kJ that can be transferred to 400 K, when the rest is rejected to a heat sink at 300 K is
 - 1) 12.50
 - 2) 14.29
 - 3) 33.33
 - 4) 57.14
- 38. Which combination of the following statements is correct?

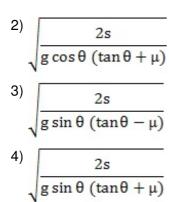
The incorporation of reheater in a steam power plant:

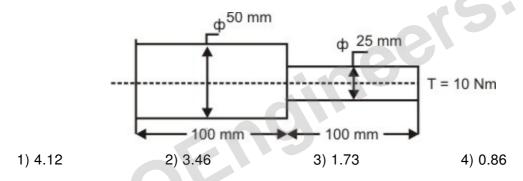

- P: always increases the thermal efficiency of the plant.
- eers.com Q: always increases the dryness fraction of steam at condenser inlet.
- R: always increases the mean temperature of heat addition.
- S: always increases the specific work output.
- 1) P and S
- 2) Q and S
- 3) P, R and S
- 4) P, Q, R and S
- 39. Which combination of the following statements is correct?
 - P: A gas cools upon expansion only when its Joule-Thomson co-efficient is positive in the temperature range of expansion.
 - Q: For a system undergoing a process, its entropy remains constant only when the process is reversible.
 - R: The work done by a closed system in an adiabatic process is a point function.
 - S: A liquid expands upon freezing when the slope of its fusion curve on Pressure. Temperature diagram is negative.
 - 1) R and S
 - 2) P and Q
 - 3) Q, R and S
 - 4) P, Q and R
- 40. Which combination of the following statements about steady incompressible forced vortex flow is correct?
 - P: Shear stress is zero at all points in the flow.
 - Q: Voracity is zero at all points in the flow.
 - R: Velocity is directly proportional to the radius from the centre of the vortex.
 - S: Total mechanical energy per unit mass is constant in the entire flow field.
 - 1) P and Q
 - 2) R and S
 - 3) P and R
 - 4) P and S

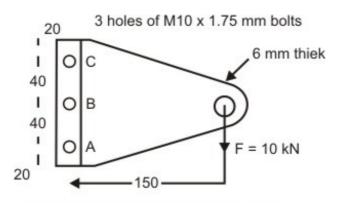
41. Match the items in columns I and II


	Column I		Column II	
P	Centrifugal	1	Axial flow	
Ľ	compressor		Axiai ilow	
Q	Centrifugal pump	2	Surging	
R	Pelton wheel	3	Priming	
s	Kaplan turbine		Pure	
ြ			impulse	

- 1) P 2, Q 3, R 4, S 1
- 2) P 2, Q 3, R 1, S 4
- 3) P 3, Q 4, R 1, S 2
- 4) P 1, Q 2, R 3, S 4

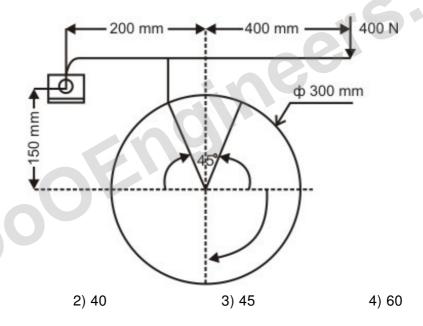

42. A uniformly loaded propped cantilever beam and its free body diagram are shown below. The reactions are


- 1) $R_1 = (5q/8), R_2 = (3q/8), M = (qP/8)$
- 2) $R_1 = (3q/8), R_2 = (5q/8), M = (q^2/8)$
- 3) $R_1 = (5q/8), R_2 = (3q/8), M = 0$
- 4) $R_1 = (3q/8), R_2 = (5q/8), M = 0$
- 43. A block of mass M is released from point P on a rough inclined plane with inclination angle θ , shown in the figure below. The co-efficient of friction μ s If μ < tan θ , then the time taken by the block to reach another point Q on the inclined plane, where PQ = s, is

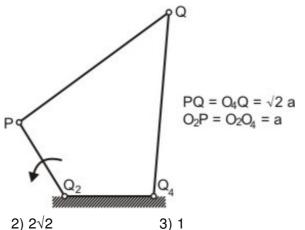

1) $\sqrt{\frac{2s}{g\cos\theta\,\left(\tan\theta-\mu\right)}}$

- 44. A 200 \times 100 \times 50 mm steel block is subjected to a hydrostatic pressure of 15 MPa. The Young's modulus and Poisson's ratio of the material are 200 GPa and 0.3 respectively. The change in the volume of the block in mm³ is
 - 1) 85
- 2) 90
- 3) 100
- 4) 110
- 45. A stepped steel shaft shown below is subjected to 10 Nm torque. If the modulus of rigidity is 80 GPa, the strain energy in the shaft in N mm is

- 46. A thin spherical pressure vessel of 200 mm diameter and 1 mm thickness is subjected to an internal pressure varying from 4 to 8 MPa. Assume that the yield, ultimate, and endurance strength of material are 600, 800 and 400 MPa respectively. The factor of safety as per Goodman's relation is
 - 1) 2.0
- 2) 1.6
- 3) 1.4
- 4) 1.2
- 47. A natural feed journal bearing of diameter 50 mm and length 50 mm operating at 20 revolution/ second carries a load of 2.0 kN. The lubricant used has a viscosity of 20 MPa s. The radial clearance is 50 μ m. The Sommerfeld number for the bearing is
 - 1) 0.062
 - 2) 0.125
 - 3) 0.250
 - 4) 0.785
- 48. A bolted joint is shown below. The maximum shear stress, in MPa, in the bolts at A and B, respectively are

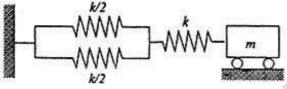


(all dimensions in the figure are in mm)


- 1) 242.6, 42.5
- 2) 42.5, 242.6
- 3) 42.5, 42.5

1) 30

- 4) 242.6, 242.6
- 49. A block-brake shown below has a face width of 300 mm and a mean co-efficient of friction of 0.25. For an activating force of 400 N, the braking torque in Nm is


50. The input link O_2P of a four bar linkage is rotated at 2 rad/s counter clockwise direction as shown below. The angular velocity of the coupler PQ in rad/s, at an instant when $\angle O_4O_2P$ = 180°, is

1) 4

2) 2√2

- 4) 1/√2
- 51. The speed of an engine varies from 210 rad/s to 190 rad/s. During a cycle the change in kinetic energy is found to be 400 Nm. The inertia of the flywheel in kgm2 is
 - 1) 0.10
- 2) 0.20
- 3) 0.30
- 4) 0.40
- 52. The natural frequency of the system shown below is

- 1) √(k/2m)
- 2) √(k/m)
- 3) √(2k/m)
- 4) √(3k/m)
- 53. The equation of motion of a harmonic oscillator is given by

$$(d^2x/dt^2) + 2\zeta\omega_n (dx/dt) + \omega_n^2 x = 0,$$

and the initial conditions at t = 0 are x(0) = X, dx/dt(0) = 0. The amplitude of x(t) after n complete cycles is

1)
$$Xe^{-2n\pi\left(\frac{\zeta}{\sqrt{1-\zeta^2}}\right)}$$

$$2) \underset{Xe}{\text{2n}\pi} \left(\frac{\zeta}{\sqrt{1-\zeta^2}} \right)$$

3)
$$Xe^{-2n\pi\left(\frac{\sqrt{1-\zeta^2}}{\zeta}\right)}$$

- 4) X
- 54. The piston rod of diameter 20 mm and length 700 mm in a hydraulic cylinder is subjected to a compressive force of 10 kN due to the internal pressure. The end conditions for the rod may be assumed as guided at the piston end and hinged at the other end. The Young's modulus is 200 GPa. The factor of safety for the piston rod is
 - 1) 0.68
- 2) 2.75
- 3) 5.62
- 4) 11.0

	work piece is low, the		uctivity of tool is high are and material removal ra	
1) high and hig	h			
2) low and low				
3) high and low				
4) low and high	1			
The cutting vel		n of cut are 120 m/	achining energy is 2.0 J min, 0.2 min/rev and	
1) 40	2) 80	3) 400	4) 800	
circuit voltage of the measured a measured arc of	f 80 V and short circuit arc current is 500 A courrent is 460 A corre clength (L) characteris	t current of 800 A. Dur corresponding to an a esponding to an arc I tic of the welding arc o	e characteristic provides ring welding with the ma rc length of 5.0 mm ar ength of 7.0 mm. The can be given as (where	chine, nd the linear

2) 0.05 1) 0.04

mm between the hole and the shaft is

- 59. In orthogonal turning of low carbon steel pipe with principal cutting edge angle of 90°, the main cutting force is 1000 N and the feed force is 800 N. The shear angle is 25° and orthogonal rake angle is zero. Employing Merchant's theory, the ratio of friction force to normal force acting on the cutting tool is
 - 1) 1.56
- 2) 1.25
- 3) 0.80

3) 0.10

4) 0.64

4) 0.11

60. Two metallic sheets, each of 2.0 mm thickness, are welded in a lap joint configuration by resistance spot welding at a welding current of 10 kA and welding time of 10 milli second. A spherical fusion zone extending up to the full thickness of each sheet is formed. The properties of the metallic sheets are given as:

ambient temperature = 293 K

melting temperature = 1793 K

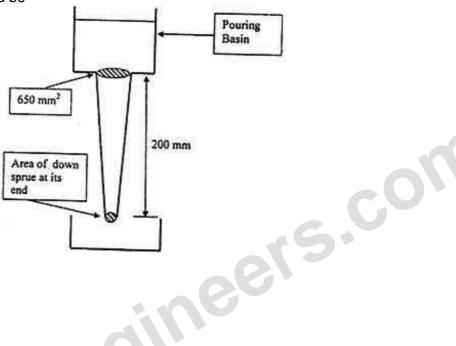
density = 7000 kg/m^3

latent heat of fusion = 300 kJ/kg

specific heat = 800 J/kg K

Assume: (i) contact resistance along sheet-sheet interface is 500 micro-ohm and along

electrode-sheet interface is zero; (ii) no conductive heat loss through the bulk sheet materials; and (iii) the complete weld fusion zone is at the melting temperature.


The melting efficiency (in %) of the process is

- 1) 50.37
- 2) 60.37
- 3) 70.37
- 4) 80.37
- 61. Capacities of production of an item over 3 consecutive months in regular time are 100, 100 and 80 and in overtime are 20, 20 and 40. The demands over those 3 months are 90, 130 and 110. The cost of production in regular time and overtime are respectively Rs. 20 per item and Rs. 24 per item. Inventory carrying cost is Rs. 2 per item per month. The levels of starting and final inventory are nil. Backorder is not permitted. For minimum cost of plan, the level of planned production in overtime in the third month is
 - 1) 40
- 2) 30
- 3) 20
- 4) 0
- 62. In open-die forging, a disc of diameter 200 mm and height 60 mm is compressed without any barreling effect. The final diameter of the disc is 400 mm. The true strain is
 - 1) 1.986
 - 2) 1.686
 - 3) 1.386
 - 4) 0.602
- 63. The thickness of a metallic sheet is reduced from an initial value of 16 mm to a final value of 10 mm in one single pass rolling with a pair of cylindrical rollers each of diameter of 400 mm. The bite angle in degree will be
 - 1) 5.936
 - 2) 7.936
 - 3) 8.936
 - 4) 9.936
- 64. Match the correct combination for following metal working processes.

	Processes		Associated state of stress
Р	Blanking	1	Tension
Q	Stretch Forming	2	Compression
R	Coining	3	Shear
S	Deep Drawing	4	Tension and Compression
		5	Tension and Shear

- 1) P 2, Q 1, R 3, S 4
- 2) P 3, Q 4, R 1, S 5
- 3) P 5, Q 4, R 3, S 1
- 4) P 3, Q 1, R 2, S 4

65. A 200 mm long down sprue has an area of cross- section of 650 mm² where the pouring basin meets the down sprue (i.e. at the beginning of the down sprue). A constant head of molten metal is maintained by the pouring basin. The molten metal flow rate is 6.5 x 10⁵ mm³/s. Considering the end of down sprue to be open to atmosphere and an acceleration due to gravity of 10⁴ mm/s², the area of the down sprue in mm² at its end (avoiding aspiration effect) should be

- 1) 650.0
- 2) 350.0
- 3) 290.7
- 4) 190.0
- 66. The force requirement in a blanking operation of low carbon steel sheet is 5.0 kN. The thickness of the sheet is 't' and diameter of the blanked part is 'd'. For the same work material, if the diameter of the blanked part is increased to 1.5 d and thickness is reduced to 0.4 t, the new blanking force in kN is
 - 1) 3.0
- 2) 4.5
- 3) 5.0
- 4) 8.0
- 67. Match the most suitable manufacturing processes for the following parts.

	Parts		Manufacturing Processes
Р	Computer chip	1	Electrochemical Machining
Q	Metal forming dies and molds	2	Ultrasonic Machining
R	Turbine blade	3	Electrodischarge Machining
S	Glass	4	Photochemical Machining

- 1) P 4, Q 3, R 2, S 1
- 2) P 4, Q 3, R 2, S 1
- 3) P 3, Q 1, R 4, S 2
- 4) P 1, Q 2, R 4, S 3
- 68. The maximum level of inventory of an item is 100 and it is achieved with infinite replenishment rate. The inventory becomes zero over one and half month due to

consumption at a uniform rate. This cycle continues throughout the year. Ordering cost is Rs. 100 per order and inventory carrying cost is Rs. 10 per item per month. Annual cost (in Rs.) of the plan, neglecting material cost, is

- 1)800
- 2) 2800
- 3) 4800
- 4) 6800

69. In a machine shop, pins of 15 mm diameter are produced at a rate of 1000 per month and the same is consumed at a rate of 500 per month. The production and consumption continue simultaneously till the maximum inventory is reached. Then inventory is allowed to reduced to zero due to consumption. The lot size of production is 1000. If backlog is not allowed, the maximum inventory level is

- 1) 400
- 2) 500
- 3) 600
- 4) 700

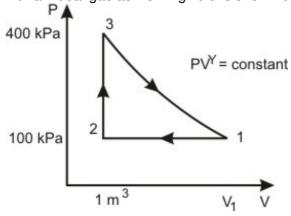
70. The net requirements of an item over 5 consecutive weeks are 50 - 0 - 15 - 20 - 20. The inventory carrying cost and ordering cost are Re.1 per item per week and Rs.100 per order respectively. Starting inventory is zero. Use "Least Unit Cost Technique" for developing the plan. The cost of the plan (in Rs.) is

- 1) 200
- 2) 250
- 3) 255
- 4) 260

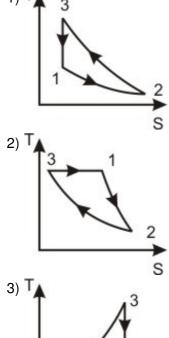
A gear set has a pinion with 20 teeth and a gear with 40 teeth. The pinion runs at 30 rev /s and transmits a power of 20 kW. The teeth are on the 20° full-depth system and have a module of 5 mm. The length of the line of action is 19 mm.

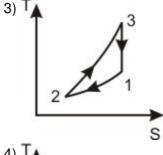
71. The center distance for the above gear set in mm is

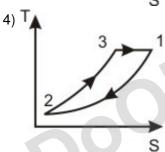
- 1) 140
- 2) 150
- 3) 160
- 4) 170


72. The contact ratio of the contacting tooth is

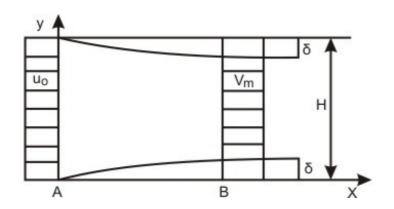
- 1) 1.21
- 2) 1.25
- 3) 1.29
- 4) 1.33


73. The resultant force on the contacting gear tooth in N is


- 1) 77.23
- 2) 212.20
- 3) 225.80
- 4) 289.43


A thermodynamic cyde with an ideal gas as working fluid is shown below.

74. The above cycle is represented on T-S plane by



- 75. If the specific heats of the working fluid are constant and the value of specific heat ration is 1.4, the thermal efficiency (%) of the cycle is
 - 1) 21
- 2) 40.9
- 3) 42.6
- 4) 59.7

ineers.com

Directions for question 76 to 77:

Consider a steady incompressible flow through a channel as shown below.

The velocity profile is uniform with a value of u₀ at the inlet section A. The velocity profile at section B downstream is neers.com

$$u = \begin{cases} V_m \frac{y}{\delta}, & 0 \leq y \leq \delta \\ V_m, & \delta \leq y' \leq H - \delta \\ V_m \frac{H - y}{\delta}, & H - \delta \leq y \leq H \end{cases}$$

76. The ratio V_m/u_0 is

1)
$$1/(1 - 2(\delta / H))$$

- 2) 1
- 3) $1/(1 (\delta / H))$
- 4) $1/(1 + (\delta / H))$

77. The ratio (PA - PB)/(1/2(ρu_0^2)) (where PA and PB are the pressures at section A and B, respectively, and ρ is the density of the fluid) is

1)
$$(1/(1 - (\delta / H))^2)$$
- 1

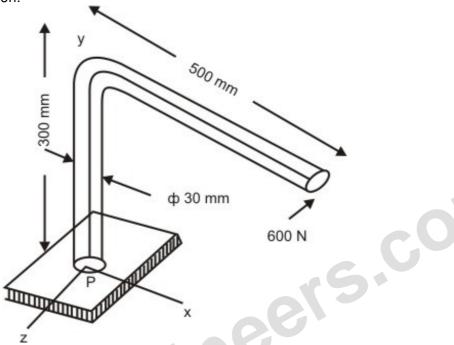
2)
$$(1/[1 - (\delta / H)]^2$$

3)
$$(1/(1 - (2\delta / H))^2)$$
- 1

4)
$$1/(1 + (\delta / H))$$

Directions for question 78 to 79:

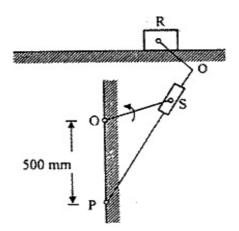
Consider steady one-dimensional heat flow in a plate of 20 mm thickness with a uniform heat generation of 80 MW/m³. The left and right faces are kept at constant temperatures of 160°C and 120°C respectively. The plate has a constant thermal conductivity of 200 W/mK.


78. The location of maximum temperature within the plate from its left face is

- 1) 15 mm
- 2) 10 mm
- 3) 5 mm
- 4) 0 mm

79. The maximum temperature within the plate in °C is

Directions for question 80 to 81:


A machine frame shown in the figure below is subjected to a horizontal force of 600 N parallel to z-direction.

- 80. The normal and shear stresses in MPa at point P are respectively
 - 1) 67.9 and 56.6
 - 2) 56.6 and 67.9
 - 3) 67.9 and 0.0
 - 4) 0.0 and 56.6
- 81. The maximum principal stress in MPa and the orientation of the corresponding principal plane in degrees are respectively
 - 1) 32.0 and 29.52
 - 2) 100.0 and 60.48
 - 3) 32.0 and 60.48
 - 4) 100.0 and 29.52

Directions for question 82 to 83:

A quick return mechanism is shown below. The crank OS is driven at 2 rev/s in counter-clockwise direction.

- 82. If the quick return ratio is 1:2, then the length of the crank in mm is
 - 1) 250
 - 2) 250√3
 - 3) 500
 - 4) 500√3
- 83. The angular speed of PQ in rev/s when the block R attains maximum speed during forward stroke (stroke with slower speed) is
 - 1) 1/3
- 2) 2/3
- 3) 2

4) 3

Directions for question 84 to 85:

A low carbon steel bar of 147 mm diameter with a length of 630 mm is being turned with uncoated carbide insert. The observed tool lives are 24 min and 12 min for cutting velocities of 90 m/min and 120 m/min respectively. The feed and depth of cut are 0.2 mm/rev and 2 mm respectively. Use the unmachined diameter to calculate the cutting velocity.

- 84. When tool life is 20 min, the cutting velocity in m/min is
 - 1) 87
- 2) 97
- 3) 107
- 4) 114
- 85. Neglect over-travel or approach of the tool. When tool life is 20 min, the machining time in min for a single pass is
 - 1) 5

- 2) 10
- 3) 15
- 4) 20

Answer Key

	1) 2 11) 4	2) 1 12) 1	3) 2 13) 3	4) 1 14) 3	5) 3 15) 3	6) 2 16) 2	7) 4 17) 3	8) 2 18) 2	9) 1 19) 1	10) 2 20) 4
	21) 1	22) 2	23) 3	24) 2	25) 1	26) 4	27) 2	28) 2	29) 3	30) 2
	31) 2	32) 1	33) 3	34) 3	35) 2	36) 2	37) 4	38) 2	39) 1	40) 2
	41) 1	42) 1	43) 1	44) 2	45) 3	46) 3	47) 3	48) 4	49) 3	50) 3
	51) 1	52) 1	53) 1	54) 1	55) 1	56) 4	57) 1	58) 3	59) 3	60) 3
	04\0	00) 0	00) 4	04) 4	CE) 0	00) 1	07) 1	00\0	00\ 0	70) 0
	71) 2	72) 3	73) 3	74) 3	75) 1	76) 3	77) 1	78) 3	79) 2	80) 3
	81) 2	82) 1	83) 2	84) 2	85) 3					ow
								15		
						310	Sk			
F	93									70) 2 80) 3