Total No. of Questions-12]
[Total No. of Printed Pages-7
S.E. (Mechanical)(First Semester) EXAMINATION, 2010 APPLIED THERMODYNAMICS
(2008 COURSE)
Time : Three Hours
Maximum Marks : 100
N.B. :- (i) Answer three questions from each Section.
(ii) Answers to the two Sections should be written in separate answer-books.
(iii) Neat diagrams must be drawn wherever necessary.
(iv) Figures to the right indicate full marks.
(v) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and steam tables is allowed.
(vi) Assume suitable data, if necessary.

SECTION I

1. (a) Obtain an expression for entropy change in the form :

$$
\begin{equation*}
\mathrm{S}_{2}-\mathrm{S}_{1}=c_{p} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}-\mathrm{R} \ln \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}} \tag{8}
\end{equation*}
$$

(b) What are statements of second law of thermodynamics ? How is second law applicable to compressors and air receiver tanks ?

Or
2. (a) Air is compressed from 100 kPa and $17^{\circ} \mathrm{C}$ to 600 kPa and $57^{\circ} \mathrm{C}$. What will be entropy change ? Now if this process is carried out in isentropic way by maintaining initial conditions and pressure ratio, what will be final temperature of air ?
(b) Explain Clausius inequality.
3. (a) Carbon steel balls of density $7833 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mathrm{C}_{p} 0.465$ $\mathrm{kJ} / \mathrm{kgK}$, diameter 8 mm are annealed by heating to $900^{\circ} \mathrm{C}$ and then by slow cooling at $100^{\circ} \mathrm{C}$ in the air. Air temperature is $35^{\circ} \mathrm{C}$. If 1200 balls are to be processed per hour, determine total rate of heat transfer and lost work.
(b) Derive expression for polytropic specific heat capacity.

Or

4. (a) $0.1 \mathrm{~m}^{3}$ of a gas is compressed from 120 kPa and $25^{\circ} \mathrm{C}$ to 1.2 MN/m ${ }^{2}$ according to a law PV ${ }^{1.2}=$ C. Calculate work done, change of internal energy, heat transfer. Also state direction of heat transfer.
(b) Obtain expression for non-flow energy.
5. (a) Explain with sketch working of separating and throttling calorimeter.
(b) What is throttling process ? Steam at 1.5 MPa and 0.7 dry is throttled to 0.10 MPa . Find out dryness fraction after throttle.
[6]
(c) Explain significance of specific steam consumption and work ratio.

Or

6. (a) Show Rankine cycle of P-V and T-S diagram when steam is superheated. Also discuss whether efficiency of cycle will change if reheat is employed. Show this process of reheat in two stages on Mollier chart.
(b) A steam turbine plant working on Rankine cycle uses steam at 15 bar and condenses at 0.3 bar. Determine Rankine efficiency if :
(i) steam is dry saturated
(ii) superheated at $400^{\circ} \mathrm{C}$.

Also find specific steam consumption in second case. Neglect feed pump work in both cases.

SECTION II

7. (a) Distinguish between :
(i) Mass fraction and mole fraction
(ii) Lean mixture and rich mixture.
(b) Explain NDIR method of gas analysis in brief.
(c) The following data was obtained during experimental determination of calorific value of fuel by Bomb calorimeter :

Mass of coal $=0.78 \mathrm{gm}$
Mass of fuse wire $=0.032 \mathrm{gm}$
Calorific value of fuse wire $=7 \mathrm{~kJ} / \mathrm{gm}$
Mass of water in calorimeter $=2 \mathrm{~kg}$
Water equivalent of calorimeter $=0.4 \mathrm{~kg}$
Rise in temperature of calorimeter water $=3.2^{\circ} \mathrm{C}$
Cooling correction $=0.01^{\circ} \mathrm{C}$.
Determine HCV and LCV of coal at NTP conditions. Given the coal contains 90% of carbon and 5% of hydrogen. [8]

Or

8. (a) With the help of neat sketch discuss the method of determining calorific value of gaseous fuel.
(b) The composition of dry flue gas as obtained by using Orsat apparatus was $\mathrm{CO}_{2}=9.8 \%, \mathrm{CO}=7.2 \%, \mathrm{H}_{2}=3.4 \%$, $\mathrm{CH}_{4}=0.3 \%, \mathrm{~N}_{2}=79.3 \%$. Calculate :
(i) Air fuel ratio
(ii) Stoichiometric air
(iii) Mixture strength.
9. (a) What are the advantages of multistaging in reciprocating air compressor ?
(b) Differentiate between reciprocating and rotary compressors. [4]
(c) A single stage, single acting reciprocating air compressor delivers 0.7 kg of air per min at 6 bar. The suction temperature and pressure are $25^{\circ} \mathrm{C}$ and 1 bar. The bore and stroke of the compressor are 100 mm and 150 mm respectively. The clearance is 3% of swept volume. Assuming index of compression and expansion to be 1.3. Find :
(i) Volumetric efficiency of the compressor
(ii) Power supplied to drive the compressor if mechanical efficiency is 85%
(iii) Speed of the compressor (RPM).

Or

10. (a) Discuss the factors those influence the volumetric efficiency of a reciprocating air compressor.
[6]
(b) A two-stage reciprocating air compressor takes in air at 1 bar and $27^{\circ} \mathrm{C}$. Air is delivered at 10 bar. The intermediate pressure is deal and intercooling is perfect. The law for compression is $\mathrm{PV}^{1.35}=\mathrm{C}$. The rate of discharge is $0.1 \mathrm{~kg} / \mathrm{s}$. Find :
(i) Power required to drive the compressor
(ii) Saving in work compared to single stage
(iii) Isothermal efficiency for multistage
(iv) Heat rejected in intercooler.

Take $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\mathrm{C}_{p}=1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
11. (a) Differentiate between mountings and accessories of the boiler.
(b) Write a short note on artificial draught.
(c) During the boiler trial the following data were obtained :

Duration of trial $=8 \mathrm{hrs}$.
Pressure of steam $=1400 \mathrm{kPa}$
Dryness fraction $=0.973$
Feed water evaporated $=26700 \mathrm{~kg}$
Hot well temperature $=50^{\circ} \mathrm{C}$

Coal used $=4260 \mathrm{~kg}$
CV of coal $=28900 \mathrm{~kJ} / \mathrm{kg}$
Air used per kg of fuel $=17 \mathrm{~kg}$
Temperature of flue gases $=344^{\circ} \mathrm{C}$
Boiler house temperature $=21^{\circ} \mathrm{C}$
C_{p} of flue gases $=1.1 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
Determine :
(i) Boiler efficiency
(ii) Equivalent evaporation
(iii) Heat lost to flue gases.

Or

12. (a) Explain the term boiler efficiency and equivalent evaporation by writing its significance.
(b) Explain how it is an advantageous using an economizer and superheater in steam power plant.
(c) A 32 m high chimney is used to discharge hot gases at $297^{\circ} \mathrm{C}$ to the atmosphere which is at $27^{\circ} \mathrm{C}$. Find the mass of air actually used per kg of fuel, if the draught produced is 12 mm of water. Also calculate draught measured in terms of hot gas column.
