Total No. of Questions-12] [Total No. of Printed Pages-8

[3762] - 111

S.E. (Mechanical) (I Semester) EXAMINATION, 2010

APPLIED THERMODYNAMICS

(2008 PATTERN)

Time : Three Hours

Maximum Marks :

N.B. :- (i) Answer any three questions from Section I and any three questions from Section II.

- Answer to the two Sections should be whitten in separate *(ii)* answer-books.
- Neat diagrams must be drawn wherever necessary. (iii)
- Figures to the right indicate full marks. (iv)
- Use of logarithmic tables, Slide rule, Mollier charts, electronic (v)pocket calculator and seam tables is allowed.
- Assume suitable data if necessary. (vi)

SECTION I

Unit I

What are the principal reasons of irreversibility ? Give three 1. (a) examples. [8]

An insulated vessel of 0.5 m³ capacity is divided by a rigid (b) conducting diaphragm into two chambers A and B each having city of 0.25 m³. Chamber A contains air at 1.4 bar pressure

P.T.O.

and 290 K temperature and the corresponding parameters for air in chamber B are 4.2 bar and 440 K. Calculate :

(i) Final equilibrium temperature

(ii) Final pressure on each side of the diaphragm and(iii) Entropy change of system.

For air take $C_v = 0.715 \text{ kJ/kg K}$ and R = 0.287 kJ/kg [8]

(a) Show that entropy change in polytropic process is given by: $S_2 - S_1 = \frac{\gamma - n}{n} C_v \ln \frac{P_1}{P_2} \bullet$ [8]

An ice plant working on a reversed Carnot cycle heat pump produces 15 tonnes of ice per lay. The ice is formed from water at 0°C and the formed ice is maintained at 0°C. The heat is rejected to the atmosphere at 25°C. The heat pump is used to run the ice plant is coupled to a Carnot engine which absorbs heat from a source which is maintained at 220°C by burning least fuel of 44500 kJ/kg calorific value and rejects heat to the atmosphere. Determine :

(i) Power developed by the engine,

Yuel consumed per hour.

Take enthalpy of fusion of ice = 334.5 kJ/kg [8]

[3762]-111

2.

(b)

2

Unit II

- 3. (a) Explain the concept of available and unavailable energy. When does the system becomes dead ?
 - (b) Define the following :
 - (i) Effectiveness
 - (ii) Gibbs function
 - (c) Calculate the decrease in available energy when 20 kg of water at 90°C mixes with 30 kg of water at 50°C, the pressure being taken as constant and the temperature of the surroundings being 10°C.
 - Take Cp of water as 4.18 NJ/kg K.

[8]

[4]

(a) Derive equation of state and state its significance. [8]
(b) 1 kg of air at a pressure of 8 bar and a temperature of 100°C undergoes 3 reversible polytropic process following the law PV^{1.2} = Constant. If the final pressure is 1.8 bar, determine :

(i) The isoal specific volume, temperature and increase of entropy;
(ii) The work done and the heat transfer.

(iii) The work done and the heat transfer.

3

[3762]-111

4.

Unit III

5. (a) Explain the following terms :

(i) Critical point

(ii) Dryness fraction

- (b) With the help of a neat sketch explain the working Separating and throttling calorimeter. [6]
- (c) Steam at 7 bar and 250°C has a volume of 0.5046 m³. In a frictionless constant volume process, pressure changes to 3.5 bar. Find the final temperature and the heat transferred. Also determine the change in entropy.
- 6. (a) Explain with a neat sketch a regenerative cycle. State its advantages. [6]

Or

- (b) State various methods of improving efficiency of a Rankine cycle.
 [2]
- (c) A Rankine cycle operates between pressure of 80 bar and 0.1
 bar The maximum cycle temperature is 600°C. If the steam turbine and condensate pump efficiencies are 0.9
 ad 0.8 respectively, calculate the specific work and thermal efficiency. [10]

[3762]-111

4

SECTION II

Unit IV

- 7. (a) Derive an expression for minimum quantity of air required for complete combustion of 1 kg of fuel assuming that fuel contains carbon, hydrogen, sulphur and raygen as constituents. [6]
 - (b) During a boiler trial a sample of coal gave the following analysis by mass :

Carban = 89%, Hydrogen = 4%, Oxygen = 3%, Sulphur = 1%, the remaining being incombustible. Determine stoichiometric air required per kg of coal. If 60% excess air is supplied, estimate the percentage analysis by mass of the dry flue gas. Convert it into volumetric analysis. [10]

- (a) Discuss the method of determining volumetric analysis of dry flue gases with neat sketch. [8]
 - (b) During Bomb calorimeter test on diesel oil, the following data were recorded ?

Room temperature = 25°C

Weight of crucible = 8.231 gm

Weight of crucible and diesel oil = 8.803 gm

Veight of calorimeter vessel = 1.05 kg

Weight of water and clorimeter vessel = 3.5 kg

[3762]-111

P.T.O.

Water equivalent of calorimeter = 0.56 kg

Rise in temperature of water and calorimeter = $2.35^{\circ}C$ Cooling correction = $0.02^{\circ}C$

Find the HCV and LCV when mass of condensate is 0.30 gra. The partial pressure of water vapour is 8 kPa. [8]

Unit V

9.

(a) Explain the factors which affect volumetric efficiency of a reciprocating air compressor. [6]

- (b) Explain the functions of intercooler an abercooler in case
 of a reciprocating air compressor. [4]
- (c) A single stage, single acting air compressor has a bore of 200 mm and stroke 300 mm. It runs at 420 rpm and has a clearance ratio of 0.065. The index of compression can be assumed as 1.3. The intake pressure is 1 bar and intake temperature is 27°C. Delivery pressure is 500 kPa. Determine :
 - (i) FAD at NTP in m^3/hr
 - (ii) Volumetric officiency
 - (iii) Delivery air temperature
 - (iv) Power required and
 - (v) Isothermal efficiency.

[8]

(a) Explain with a next sketch any one of rotary compressor. [5]
 (b) Discuss various methods of increasing isothermal efficiency of the compressor. [5]

Or

[3762]-111

6

(c) A two stage, double acting air compressor runs at 120 rpm. It draws in air at 1 bar and 293 K and compresses it with a total pressure ratio of 10. The intercooler used in between the stages works at a pressure of 3 bar and the air is cooled in it up to a temperature of 302 K. Determine the shaft power of the compressor having mechnical efficiency and volumetric efficiency of 90% and 82% respectively. The diameter of LP cylinder is 25 cm and stroke is 37.5 cm. The index of compression for each stage is 1.3.

Unit VI

(a) Obtain an expression for chinney draught. [6]
(b) Explain the term boiler efficiency and equivalent evaporation in relation with the bolier [4]

(c) Determine the air-fiel atio for an oil fired steam with the following data :

[6]

Chimney height = 40 m

Draught = 25 mm of water column

Mean channey gas temperature = 367°C

matent outside temperature = 20°C

Also calculate velocity of the flue gases.

[3762]-111

12. (a) Give the function and location of the following related to the boiler :

- (i) Fusible plug
- (ii) Superheater
- (b) Write a short note on the classification of boiler. \bigcirc [6]
- (c) The equivalent evaporation of a boiler from and at 100°C is
 10.6 kg/kg of fuel. The calorific value of the fuel is 29800
 kJ/kg. Determine the efficiency of the boiler. If the boiler produces
 15000 kg/hr of steam at 24 bar from feed water at 39°C and
 the fuel consumption is 1650 kg/hr, determine the condition
 of steam produced. [6]

Or

[3762]-111

8