S.E. (Mechanical) (First Sem.) EXAMINATION, 2010

APPLIED THERMODYNAMICS
(2003 COURSE)

Time : Three Hours
Maximum Marks : 100 N.B. :- (i) Answer three questions from Section I a dree questions from Section II.
(ii) Answer to the two sections should be written in separate answer-books.
(iii) Neat diagrams must be ran wherever necessary.
(iv) Figures to the right dicate full marks.
(v) Use of logarithmic t ble slide rule, Mollier charts, electronic pocket calculator ana steam tables is allowed.
(vi) Assume suitatelata, if necessary.

UNIT I

1. (a) Exfen Carnot cycle and derive the expression for its efficiency. Discuss the reasons, why Carnot cycle could not practiced ?
(b) A Carnot heat engine operates between two heat reservoirs at temperatures of $725^{\circ} \mathrm{C}$ and $70^{\circ} \mathrm{C}$. The engine drives a reversib refrigerator which operates between reservoirs at $70^{\circ} \mathrm{C}$ and $-32^{\circ} \mathrm{C}$. The heat transferred to the engine is 2500 kJ and tm net work output of the combined engine-refrigerator un is 425 kJ . Evaluate the heat transferred to the ref gerator and net heat transferred to the reservoir at $70^{\circ} \mathrm{C}$.

Or
2. (a) Show that entropy change in a polytropic cess of an ideal gas :
(b) State the "principle of incrod in entropy" Explain with example.
(c) A heat exchanger us $5000 \mathrm{~kg} / \mathrm{hr}$ of water to cool oil from $150^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. The rate of flow of oil is $2,500 \mathrm{~kg} / \mathrm{hr}$. The average specific ke , of the oil is $2.5 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The water enters theat exchanger at $21^{\circ} \mathrm{C}$. Determine : Change in entropy during heat exchange process.

UNIT II

3. (a) ve that the law for expansion for a reversible adiabatic process in $\mathrm{PV}^{\gamma}=\mathrm{C}$.
(b) In an engine working on a diesel cycle, inlet pressure and temperature are 1 bar and $17^{\circ} \mathrm{C}$ respectively. Pressure at the end of adiabatic compression is 35 bar . The ratio of expansion is 5. Calculate :
(i) Heat addition
(ii) Heat rejection
(iii) Efficiency of the cycle.

Take $\gamma=1.4, \mathrm{C}_{p}=1.004 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{v}=0.7 \bigcirc \mathrm{r} / \mathrm{kgK}$
[8]
(c) Define the following terms :
(i) Mean effective pressure
(ii) Work ratio.
s
[4]
4. (a) Compare Otto cycle and diecal cycle for the same compression ratio and same heat inpu
[4]
(b) 10 kg of compressed air at pressure of 40 bar and temperature of $500^{\circ} \mathrm{C}$ receivest at at constant pressure until the temperature reaches to $1250^{\circ} \mathrm{C}$. It is then expanded to 6 times of its volume which it had at the end of heat addition, the law of expansion being $\mathrm{PV}^{1.3}=\mathrm{C}$. Calculate the change in internal energ A. ork done and heat transfer in each process. Take $\mathrm{C}_{\mathrm{N}}=1.0045 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{v}=0.7175 \mathrm{~kJ} / \mathrm{kgK}$ for air.
(c) Determine air standard efficiency of air standard Otto cycle, when the cycle develops maximum work with the temperature limits of 300 K and 1200 K and working fluid is air. By keeping the same compression ratio, what will be the percentage chart in efficiency if helium is used as working fluid ? Take $\mathrm{C}_{p}=5.22 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{v}=3.13 \mathrm{~kJ} / \mathrm{kgK}$ for

UNIT III

5. (a) In a test to find dryness fraction of steam when a combined separating and throttling calorimeter, the Nowing observations were recorded :

Water collected in the separ ang calorimeter $=4.5 \mathrm{~kg}$ Steam condensed after cottling calorimeter $=45.5 \mathrm{~kg}$ Inlet pressure of stea 12.5 bar absolute

Temperature of stam anrottling $=145^{\circ} \mathrm{C}$ Manometer readins 97 mm of Hg Barometer reacy $=750 \mathrm{~mm}$ of Hg Estimate ryness fraction of steam as it enters the throttling calorimeter and dryness fraction of steam before separating calor meter.
(b) Explain the process of formation of steam using T-H and P-V diagram.

Or

6. (a) Define the following terms :
(i) Latent heat of vaporization
(ii) Dryness fraction
(iii) Saturation temperature.
(b) A Rankine cycle operates between pressures f bar and 0.3 bar. The steam at entry of the turbe is diy saturated. Determine :
(i) Pump work
(ii) Turbine work
(iii) Rankine efficiency
(iv) Dryness at the end of xpansion.

Assume flow rate of $42 \mathrm{~kg} / \mathrm{s}$.

G

II
7. (a) Explain clearly how the actual indicator diagram for a single stage pressor is different from the theoretical indicator diagram.
(b) Write a short note on F.A.D. of a reciprocating compressor. [4]
(c) A single stage, double acting air compressor running at 300 rpm , required to deliver $10 \mathrm{~m}^{3} / \mathrm{min}$ of air. The suction is at 1 bar and $27^{\circ} \mathrm{C}$. The temperature at the end of compressio is $180^{\circ} \mathrm{C}$. The law of compression and expansion is $\mathrm{PV}^{1}>$ and the clearance volume ratio is 0.05 . Determine the plumetric efficiency, the cylinder dimensions and the indicate power assuming that stroke is 1.25 times the cylinder dianeter. [10]

Or
8. (a) Derive the expression for optimum vate of the intercooler pressure in a two stage compressor. Also write the expression for pressure ratio in x stage cosession by assuming perfect intercooling.
(b) A three stage reciprocating compressor compresses air from 1 bar and $20^{\circ} \mathrm{C}$ to 5 . The law of compression is $\mathrm{PV}^{1.35}=\mathrm{C}$ for all stages Assume perfect intercooling and neglecting clearan fit minimum work required to compress $20 \mathrm{~m}^{3} / \mathrm{min}$ ree air, also find intermediate pressures. [10] ζ

UNIT V
9. (a) Explat the procedure to measure calorific value gaseous fuel expenentally.
(b) A sample of 1 kg of coal has the following composition : Carbon $=78 \%$, Hydrogen $=5 \%$, Oxygen $=8 \%$, Sulpher $=2 \%$, Nitrogen $=2 \%$, Ash $=5 \%$. It is burnt in a furnace with 30% excess air. The flue gases enter the chimney at 335° an atmosphere is at $15^{\circ} \mathrm{C}$. Calculate the total mass of fae gases and quantity of heat carried away by them in $\mathrm{kJ} / \mathrm{kg}$ coal. Take C_{p} for Oxygen and Nitrogen $=1.005 \mathrm{~kJ} / \mathrm{kgK}$ and C_{p} for CO_{2} and $\mathrm{SO}_{2}=1.07 \mathrm{~kJ} / \mathrm{kgK}$.
10. (a) Define the following :
(i) Stoichiometric air
(ii) HCV and LCV of the fue
(iii) Mixture strength.
[6]
(b) A petrol engine uses fue $\mathrm{C}_{7} \mathrm{H}_{16}$), the measurement of fuel and air shows air atiol as $17: 1$. Calculate Stoichiometric air-fuel ratio, xture strength and volumetric analysis of products of combustion.

UNIT VI

11. (a) a short note on classification of boilers.
(c) The following observations were made during a boiler trial :

Coal used $=250 \mathrm{~kg}$ of calorific value $=29800 \mathrm{~kJ} / \mathrm{kg}$
Water evaporated $=2000 \mathrm{~kg}$
Steam pressure $=11.5$ bar (Abs)
Dryness fraction of steam $=0.95$
Feed water temperature $=34^{\circ} \mathrm{C}$
(ii) Efficiency of the boiler.

Find :
(i) Equivalent evaporation
12. (a) Explain the following terms
(i) Exergy
(ii) Irreversibility.
(b) Air enters an air than at a pressure of 6 bar and $327^{\circ} \mathrm{C}$ with a velocity 100 mss and leaves it at $1 \mathrm{bar}, 177^{\circ} \mathrm{C}$ and at $60 \mathrm{~m} / \mathrm{s}$. Flo is adiabatic and surrounding temperature is 300 K. FM/
(i) ftual work and irreversible work per kg of air flow.
(ii) Irreversibility and effectiveness of the system per kg of ar flow.
(ssume $\mathrm{C}_{p}=1 \mathrm{~kJ} / \mathrm{kgK}, \mathrm{C}_{v}=0.71 \mathrm{~kJ} / \mathrm{kgK}$ and steady flow conditions.

