B. Tech Degree VI Semester Examination, April 2009

CS/EC/EB/EI 605 CONTROL SYSTEMS ENGINEERING

(2006 Scheme)

Time: 3 Hours

Maximum Marks: 100

PART - A

(Answer ALL questions)

 $(8 \times 5 = 40)$

- I. (a) State any five theorems of Laplace transform.
 - What is analogous systems? Compare the parameters in force voltage analogous system. (b)
 - Plot the step response of a second order system and mark the different time domain (c) specification.
 - What is derivative control? What are its advantages? (d)
 - What do you mean by a stable system? How will you investigate the stability of a system using (e) Nyquist criterion?
 - What is bode plot? What are its advantages over other plots? (f)
 - What is root locus method? (g)
 - What is the use of compensators in control system? Comment on series compensation and (h) parallel compensation.

PART - B

 $(15 \times 4 = 60)$

Determine the transfer function C/R of a system shown in figure using block diagram 11. reduction method. Verify the results using Mason's gain formula.

OR

- III. Derive the transfer function of armature controlled d.c. motors.
- IV. Define and derive transient response specification of a second order control system.

What is steady state error. Explain different steady state error constants. V.

VI. Determine the gain margin and phase margin of a unity feed back system having.

$$G(s) = \frac{10}{s(1+.1s)(1+0.05s)}$$
 by using bode plot. Also find the open loop gain

for a gain margin of GM = 20dB.

VII. Explain frequent domain performance characteristics.

VIII. Sketch the root - locus plot for the positive feedback system with

$$G(s)H(s) = \frac{K(s+1)}{s(s-1)(s^2+4s+16)}.$$

Explain compensation technique. Derive transfer function of lead compensator. Lag XI. Compensator and lag-lead compensator using electrical networks.