Con. 5249-09. (REVISED COURSE)				SP-7812		
			S.E. (COMP) SEMIN CR)	14/12/00)	
21	6		Computed Grosphics	[Total Marks: 100	3 m F	
NE	3 . (1) Oues	stion No. 1 is compulsory.	5,00 400	20 1	
14.1			npt any four questions out of remaining six questio	ns.		
			me suitable data if necessary and justify the same			
1.	(a)	candeda	n Liang Barsky line clipping algorithm and hence ates of line AB with end points (7,5) and (9,7), windo		10	
	(b) Clearly differentiate between random scan and raster scan system.				5	
			even-odd test to determine whether point is inside or	and the second second	5	
2.	(a)	(a) Explain Midpoint ellipse algorithm with all required mathematical representation.(b) Explain scan line area conversion algorithm with suitable example.				
3.	(a) Prove that –				10	
	()	(i)	2D rotation and scaling commute if sx = sy or if Q and that otherwise it do not.	= $n \pi$ for integral n		
	(b)	What is rectang	Two successive rotations are additive i.e. $R(Q_1)R$ s window and viewport. Assuming the window a gular, derive the steps and the respective transforming a point $(x_w y_w)$ in a window to point $(x_v y_v)$ in	and viewport to be ormation matrix for	10	
4.			Sutherland Hodgmann polygon clipping algorithm w Warnock's algorithm used to remove hidden surface		10 10	
5.	(a)	of Bezie	operties and mathematical equations for Bezier curve er polygon as: $P_o(1,1)$, $P_1(2,3)$, $P_2(4,3)$ and $P_3(3)$		12	
	(b)		on Bezier curve. and compare boundary fill and flood fill algorithm.		8	
6.	(a)	Explain projection	Parallel and perspective projections. Derive the ma	atrix for perspective	10	
	(b)		o you mean by segment? What are the various att State which operations can be done on segments an		10	
7.	Write short notes on the following any four:-				20	
		(a) Fractals				
			ecular Reflection			
			uraud Shading			
			ering Techniques			
		(e) Half	or Models			

n