## DipIETE - ET/CS (NEW SCHEME) - Code: DE51 / DC51

## Subject: ENGINEERING MATHEMATICS - I

Time: 3 Hours

## DECEMBER 2010

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the $\mathbf{Q} .1$ will be collected by the invigilator after half an hour of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.
Q. 1 Choose the correct or the best alternative in the following:
a. $\operatorname{limit}_{x \rightarrow 0} \frac{1-\cos x}{x \sin x}$ is :
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{2}{3}$
b. If $y=(x+1)(x+2)$, then $\frac{d y}{d x}$ is
(A) $2 x-3$
(B) $3 x+2$
(C) $2 x+3$
(D) $3 x-2$
c. $\int x \cot ^{-1} x d x$ is
(A) $\frac{x^{2}}{2} \cot ^{-1} x+\frac{1}{2}\left[x-\tan ^{-1} x\right]+C$
(B) $x \cot ^{-1} x+2\left\lfloor x+\tan ^{-1} x\right\rfloor+C$
(C) $x \cot ^{-1} x-2\left[x-\tan ^{-1} x\right\rfloor+C$
(D) $\frac{x^{2}}{2} \cot ^{-1} x-\frac{1}{2}\left[x+\tan ^{-1} x\right]+C$
d. If $\Delta=\left|\begin{array}{cc}x-2 & -3 \\ 3 x & 2 x\end{array}\right|=3$, then value of $x$ is:
(A) $\frac{1}{3},-2$
(B) $\frac{1}{2}, 3$
(C) $\frac{1}{3}, 2$
(D) $\frac{1}{2},-3$
e. If $3\left[\begin{array}{ll}x & y \\ z & w\end{array}\right]=\left[\begin{array}{cc}x & 6 \\ -1 & z w\end{array}\right]+\left[\begin{array}{cc}4 & x+y \\ z+w & 3\end{array}\right]$ then $x, y, z$ and $w$ is equal to
(A) 4,3,2,1
(B) $1,2,3,4$
(C) $2,4,1,3$
(D) $3,2,4,1$
f. The order and degree of differential equation $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=\sin x$ is
(A) $0=2, \mathrm{D}=1$
(B) $0=2 \mathrm{D}=2$
(C) $0=1, \mathrm{D}=1$
(D) $0=1, \mathrm{D}=2$
g. The eighth term from the beginning in the expansion of $\left(x+\frac{1}{y}\right)^{11}$ is
(A) $\frac{333 x^{4}}{y^{4}}$
(B) $\frac{33 x^{4}}{y^{4}}$
(C) $\frac{30 x^{4}}{y^{4}}$
(D) $\frac{330 x^{4}}{y^{4}}$
h. The value of $2 \cos \frac{\pi}{13} \cdot \cos \frac{9 \pi}{13}+\cos \frac{3 \pi}{13}+\cos \frac{5 \pi}{13}$ is
(A) 1
(B) 2
(C) 0
(D) 3
i. The Cartesian co-ordinate $(2,2 \sqrt{3})$ is equal to the polar co-ordinate is
(A) $4, \pi / 3$
(B) $2, \pi / 2$
(C) $1, \pi / 3$
(D) $2, \pi / 3$
j. The area of a triangle whose vertices are $(2,7),(3,-1),(-5,6)$ is
(A) 28 sq. unit
(B) 28.5 sq. unit
(C) 25 sq. unit
(D) 25.5 sq. unit


## Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q. 2 a. If $\sin y=x \sin (a+y)$, then prove that, $\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}$.
b. Find the maximum and minimum values of the function $f(x)=\frac{4}{x+2}+x$.
Q. 3 a. Evaluate $\int \sec ^{3} x d x$.
b. Evaluate $\int_{0}^{\pi / 2} \sin 2 x \cdot \log (\tan x) d x$.
Q. 4 a. Show that, $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]=\left[\begin{array}{cc}1 & -\tan \theta / 2 \\ \tan \theta / 2 & 1\end{array}\right]\left[\begin{array}{cc}1 & \tan \theta / 2 \\ -\tan \theta / 2 & 1\end{array}\right]^{-1}$.
b. Using Cramer's method solve the following system of linear equations for $\mathrm{x}, \mathrm{y}, \mathrm{z}$

$$
\begin{gather*}
x+y+z=-1 \\
x+2 y+3 z=-4  \tag{8}\\
x+3 y+4 z=-6
\end{gather*}
$$

Q. 5 a. Solve $y^{2}+x^{2} \frac{d y}{d x}=x y \frac{d y}{d x}$.
b. Solve $\frac{d y}{d x}=-\frac{x+y \cos x}{1+\sin x}$
Q. 6 a. Find the term independent of $x$ in the expansion of $\left(3 x^{2}-\frac{1}{2 x^{3}}\right)^{10}$.
b. The sum of first three terms of a G.P. is 16 and the sum of the next three term is 128 . Find the sum of nth terms of G.P.
Q. 7 a. Prove that, $\frac{\sin 3 \theta+\sin 5 \theta+\sin 7 \theta+\sin 9 \theta}{\cos 3 \theta+\cos 5 \theta+\cos 7 \theta+\cos 9 \theta}=\tan 6 \theta$.
b. In any triangle ABC prove that

$$
\begin{equation*}
\frac{a^{2} \sin (B-C)}{\sin A}+\frac{b^{2} \sin (C-A)}{\sin B}+\frac{c^{2} \sin (A-B)}{\sin C}=0 \tag{8}
\end{equation*}
$$

Q. 8 a. Show that the equation of the straight line through the origin making angle $\phi$ with line $\mathrm{y}=\mathrm{mx}+\mathrm{b}$ is $\frac{\mathrm{y}}{\mathrm{x}}=\frac{\mathrm{m} \pm \tan \phi}{1 \mp \mathrm{~m} \tan \phi}$.
b. If the lines $y=3 x+1$ and $2 y=x+3$ are equally inclined to the line $y=m x+4$. Find the value of $m$.
Q. 9 a. Find the equation of the ellipse having its Centre at the point $(2,-3)$ and one focus at $(3,-3)$ and one vertex at $(4,-3)$.
b. Find the co-ordinate of foci, eccentricity, length of the latus-rectum of the ellipse $25 \mathrm{x}^{2}+4 \mathrm{y}^{2}=100$.

