[This question paper contains 3 printed pages]

Your Roll No.

7234

J

M.Sc./L

OPERATIONAL RESEARCH

Course VI-Queuing Theory

(Admissions of 2001 and onwards)

Time 3 Hours

Maximum Marks

75

(Write your Roll No on the top immediately on receipt of this question paper)

Attempt any five questions

What is a multi-channel queuing system ? Derive the steady-state difference equations for a M/M/C $\ (\infty \,|\, F_c F_s)$ system

Also obtain

- (i) Steady-state probability distribution for the number of units in the system
- (11) Expected number of busy servers
- (m) Expected waiting time in the queue 15
- 2 (a) Perform a comparative analysis of M/M/1 and M/M/2 queuing systems with same traffic intensity Which one is better out of two and why ' Justify your answer

[P T O]

(2) 7234

9

15

Also discuss the particular case when batch size he Geometric distribution. 4 Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain ste	for							
difference equations for the number of units in system M ^(X) /M/1 and hence obtain the probab generating function for the steady-state distribution. Also discuss the particular case when batch size he Geometric distribution. Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain ste state distribution for number of units in the system G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. (a) Distinguish between transient and steady-solutions? Point out importance of transient solution queuing theory (b) Obtain P(z, s), Laplace transform of the probab	8							
system M ^[X] /M/1 and hence obtain the probab generating function for the steady-state distribution. Also discuss the particular case when batch size he Geometric distribution. Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain ste state distribution for number of units in the sys G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. (a) Distinguish between transient and steady-solutions ? Point out importance of transient solution queuing theory (b) Obtain P(z, s), Laplace transform of the probab	tate							
generating function for the steady-state distribution. Also discuss the particular case when batch size he Geometric distribution. Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain stestate distribution for number of units in the sys G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. (a) Distinguish between transient and steady-solutions? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probability of th	the							
Also discuss the particular case when batch size he Geometric distribution. Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain ste state distribution for number of units in the sys G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. [Also prove that distribution for non-zero waiting in queue is exponential. [Also prove that distribution for non-zero waiting in queue is exponential. [Also prove that distribution for non-zero waiting in queue is exponential. [Also prove that distribution for non-zero waiting in queue is exponential. [Also prove that distribution for non-zero waiting in queue is exponential.]	lity							
Geometric distribution. Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain ste state distribution for number of units in the sys G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. Distinguish between transient and steady-s solutions? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	generating function for the steady-state distribution							
 Explain the concept of Imbedded Markov chains analysing non-Markovian queuing systems Obtain sterilition for number of units in the systems G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. (a) Distinguish between transient and steady-solutions ? Point out importance of transient solution queuing theory (b) Obtain P(z, s), Laplace transform of the probabilities. 	as a							
analysing non-Markovian queuing systems. Obtain ste state distribution for number of units in the systems G1/M/1 Also prove that distribution for non-zero waiting to in queue is exponential. 5 (a) Distinguish between transient and steady-solutions ? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probability.	15							
state distribution for number of units in the system. G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. 5 (a) Distinguish between transient and steady-solutions ? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	Explain the concept of Imbedded Markov chains for							
G1/M/1 Also prove that distribution for non-zero waiting in queue is exponential. 5 (a) Distinguish between transient and steady-solutions? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	analysing non-Markovian queuing systems Obtain steady-							
Also prove that distribution for non-zero waiting of in queue is exponential. 5 (a) Distinguish between transient and steady-solutions? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	state distribution for number of units in the system							
 in queue is exponential. (a) Distinguish between transient and steady-solutions? Point out importance of transient solution queuing theory (b) Obtain P(z, s), Laplace transform of the probability. 								
 5 (a) Distinguish between transient and steady-s solutions? Point out importance of transient solution queuing theory (b) Obtain P(z, s), Laplace transform of the probab 	ame							
solutions ? Point out importance of transient solution queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	15							
in queuing theory (b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	tate							
(b) Obtain $\overline{P}(z, s)$, Laplace transform of the probab	one							
	6							
generating function of the transient system	ılıty							
	size							
distribution for M/M/1 system. State, in brief,	the							
steps to be used for determining the trans	ient							

system size distribution

system M/D/C

6

Obtain the probability generating function for the number

of units in the system under steady-state for the queuing

7	(a)	Define	a	Markov	chain	Discuss	the	following
		concepts						8

- (i) Irreducible Markov chain,
- (11) Transient and recurrent states,
- (iii) Limiting distribution and stationary distribution for a Markov chain
- (b) What is simulation? What are the advantages and disadvantages of analysing a queuing system through simulation?