www.ausyects 4you:com

Roll No.

Total No. of Questions: 09]

[Total No. of Pages: 02

Paper ID [IC204]

(Please fill this Paper ID in OMR Sheet)

B.Tech. (Sem. - 4th)

LINEAR CONTROL SYSTEM (IC - 204)

Time: 03 Hours

Maximum Marks: 60

Instruction to Candidates:

- 1) Section A is Compulsory.
- 2) Attempt any Four questions from Section B.
- 3) Attempt any Two questions from Section C.

Section - A

Q1)

 $(10 \times 2 = 20)$

- a) What are the advantages of closed loop control system over open loop control system.
- b) Find the Inverse Laplace Transform of F (s) = s + 6/s ($s^2 + 4s + 3$).
- c) Differentiate between time variant & invariant system Give example of each system.
- d) What will be the response of a first order system with unit step input?
- e) What is the use of Laplace Transform in control system?
- f) What is the relation of location of Pole zeros on the stability of a system?
- g) What is compensating network why is this used?
- h) How Routh-Hurwitz Criterion is helpful in determining the stability of a control system.
- i) What are the various control components, what is there use?
- j) How we do the Mapping from the S Plane to Z Plane.

Section - B

 $(4 \times 5 = 20)$

Q2) What are the various steps for design of Phase Lag network? What will be the effect of phase lag network?

R-59 [2058]

- Q3) What are the advantages of sampled data control system over the continuous data control system. Draw the block diagram of sampled data control system.
- Q4) Draw the Nyquest Plot for the open loop transfer function given below. G(s) H(s) = 1/s(1+2s)(1+s) and obtain the gain margin & phase margin.
- Q5) Draw a block diagram of the circuit shown below

Q6) Determine the stability of system having characteristic equation: $S^6 + S^5 + 5S^4 + 3S^3 + 2S^2 - 4S - 8 = 0$ using Routh Hurwitz Criterion.

Section - C

 $(2 \times 10 = 20)$

- Q7) Derive the time response of a second order control system subjected to Impulse input function.
- Q8) The open loop transfer function of a control system is given by $G(s)H(s) = k/s(s+4)(s^2 + 4s+20)$ Sketch the root locus and show all the salient points on the locus.
- Q9) Sketch the Bode Plot for the transfer function given by $G(s) = 23.7(1+j\omega)(1+j0.2\omega) / (j\omega)(1+j3\omega) (1+j0.5\omega) (1+j0.1\omega).$ & from plot find Gain Margin & Phase Margin.

 $\phi \phi \phi$