Mathematics

2011 March

Science 2nd PUC (12th)

University Exam

Department of Pre-University

Education Karnataka (PUE Board)

shaalaa.com

Code No. 35

Total No. of Questions: 40]

Total No. of Printed Pages: 16]

March, 2011

MATHEMATICS

(Kannada and English Version's)

Time: 8 Hours 15 Minutes]

[Max. Marks : 100

(Kannada Version)

ಸೂಚನೆ: i) ಈ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ A, B, C, D ಮತ್ತು E ಎಂಬ ಐದು ವಿಭಾಗಗಳಿವೆ. ಎಲ್ಲಾ ವಿಭಾಗಗಳನ್ನು ಉತ್ತರಿಸಿ.

ii) ವಿಭಾಗ - A ಗೆ 10 ಅಂಕಗಳು, ವಿಭಾಗ - B ಗೆ 20 ಅಂಕಗಳು, ವಿಭಾಗ - C ಗೆ 40 ಅಂಕಗಳು, ವಿಭಾಗ - D ಗೆ 20 ಅಂಕಗಳು ಮತ್ತು ವಿಭಾಗ - E ಗೆ 10 ಅಂಕಗಳಿರುತ್ತವೆ.

ವಿಬಾಗ - A

ಈ ಕೆಳಗಿನ ಎಲ್ಲಾ ಹತ್ತು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $10 \times 1 = 10$

- 1. 6x = 3 (ಮಾಡ್ 15) ಸಮೀಕರಣಕ್ಕೆ ಪರಸ್ಪರ ಸರ್ವಸಮವಲ್ಲದ ಎಷ್ಟು ಪರಿಹಾರಗಳಿವೆ ?
- $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$ ಆದರೆ, A + A'ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 3. ವಾಸ್ತವ ಸಂಖ್ಯೆಗಳ ಗಣ R ನಲ್ಲಿ * ಕ್ರಿಯೆಯ ವ್ಯಾಖ್ಯೆ $a*b=a+b+5, \ \forall \ a,\ b\in R$ ಆಗಿದೆ. ಈ * ಕ್ರಿಯೆಯು ದ್ವಿಮಾನ ಕ್ರಿಯೆಯೇ ಅಥವಾ ಅಲ್ಲವೇ ಎಂದು ಪರೀಕ್ಷಿಸಿ.

[Turn over

Visit www.shaalaa.com for more question papers.

- 4. $\overrightarrow{AB}=3\hat{i}+2\hat{j}+6\hat{k}$ ಮತ್ತು $\overrightarrow{OA}=\hat{i}-\hat{j}-3\hat{k}$ ಆದರೆ, B ನ ಸ್ಥಾನ ಸದಿಶವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 5. P(1,1) ಬಿಂದುವಿನಿಂದ $3x^2 + 3y^2 + 6x + 9y 2 = 0$ ವೃತ್ತಕ್ಕೆ ಎಳೆಯಲ್ಪಟ್ಟ ಸ್ಪರ್ಶಕದ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 6. y = mx + c ಸರಳರೇಖೆಯು $y^2 = 4ax$ ಪರವಲಯಕ್ಕೆ ಸ್ಪರ್ಶಕವಾದರೆ, ಸ್ಪರ್ಶಬಿಂದುವಿನ ನಿರ್ದೇಶಕಗಳನ್ನು ಬರೆಯಿರಿ.
- $7. \quad \sin\left[\frac{\pi}{3}-\sin^{-1}\left(-\frac{1}{2}\right)\right]$ ದ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 8. $e^{i\pi}$ ನ ಊಹ್ಯ ಭಾಗವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 9. $y = \sin \left(2 \sin^{-1} x \right)$ ಆದರೆ, $\frac{dy}{dx}$ ಅನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 10. $\int_{0}^{\pi/2} \sec^2 x \, dx$ ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

ವಿಭಾಗ – B

ಈ ಕೆಳಗಿನವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಹತ್ತು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $10 \times 2 = 20$

- 11. $a \mid bc$ ಮತ್ತು a ಮತ್ತು b ಗಳ ಮ.ಸಾ.ಅ. (G.C.D.) 1 ಆದರೆ, $a \mid c$ ಎಂದು ಸಾಧಿಸಿ.
- $12. \ \ A = \left[egin{array}{cccc} 1 & 2 & 0 \\ -3 & 1 & -2 \end{array}
 ight]$ ಮತ್ತು $B = \left[egin{array}{cccc} 2 & 1 & -3 \\ 2 & 1 & 1 \end{array}
 ight]$ ಆದಾಗ, $AB^{\,\prime}$ ಅನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

- 13. $G = \{1, \omega, \omega^2\}$, ω ವು ಏಕತೆಯ ಘನಮೂಲವಾಗಿದೆ. ಗುಣಾಕಾರ ಪ್ರಕ್ರಿಯೆಯಲ್ಲಿ ಕೋಷ್ಠಕವನ್ನು ಬರೆಯಿರಿ ಮತ್ತು ω^2 ರ ವಿಲೋಮವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 14. (G, *) ಸಂಕುಲದಲ್ಲಿ (a * b) $^{-1}$ = b^{-1} * a^{-1} , $\forall a, b \in G$ ಎಂದು ಸಾಧಿಸಿ.
- 15. $2\hat{i} \hat{j} + \hat{k}$, $\hat{i} 3\hat{j} 5\hat{k}$ ಮತ್ತು $3\hat{i} 4\hat{j} 4\hat{k}$ ಸ್ಥಾನ ಸದಿಶಗಳಾದ ಬಿಂದುಗಳು ಲಂಬಕೋನ ತ್ರಿಕೋನದ ಮೂರು ಶೃಂಗಗಳೆಂದು ತೋರಿಸಿ.
- 16. (5, -7) ಮತ್ತು (7, -5) ಬಿಂದುಗಳು ವ್ಯಾಸದ ತುದಿಗಳಾಗಿವುಳ್ಳ ವೃತ್ತದ ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 17. $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$; $-1 \le x \le 1$ ఎందు నాధిసి.
- 18. $x = \cos A + i \sin A$, $y = \cos B + i \sin B$ ಆದರೆ, $xy \frac{1}{xy} = 2 i \sin (A + B)$ ಎಂದು ತೋರಿಸಿ.
- 19. $y = \tan^{-1} \left[\sqrt{\frac{1 \cos x}{1 + \cos x}} \right]$ ಆದರೆ, $\frac{d^2 y}{dx^2} = 0$ ಎಂದು ಸಾಧಿಸಿ.
- 20. $y^2 = 3 4x$ ವಕ್ರರೇಖೆಗೆ ಸ್ಪರ್ಶರೇಖೆಯು, 2x + y 2 = 0 ಸರಳರೇಖೆಗೆ ಸಮಾನಾಂತರವಾದಾಗ, ವಕ್ರರೇಖೆಯ ಮೇಲಿನ ಬಿಂದುವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

21.
$$\int \frac{\cos 2x}{\cos^2 x \cdot \sin^2 x} dx$$
ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

22. ಸ್ಪರ್ಶಕದ ಓಟವು m ಆಗಿದ್ದು, ಮೂಲಬಿಂದುವಿನ (Origin) ಮೂಲಕ ಹಾದುಹೋಗುವ ಎಲ್ಲಾ ಸರಳರೇಖೆಗಳ ಸಮೂಹದ ಅವಕಲ ಸಮೀಕರಣವನ್ನು (ಡಿಫರೆನ್ಷಿಯಲ್ ಈಕ್ವೇಷನ್) ರೂಪಿಸಿ.

ವಿಭಾಗ - C

I. ಈ ಕೆಳಗಿನವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಮೂರು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $3 \times 5 = 1!$

- 23. a) 189 ಮತ್ತು 243 ರ ಮಹತ್ತರ ಸಾಮಾನ್ಯ ಅಪವರ್ತನವನ್ನು (G.C.D.) ಕಂಡುಹಿಡಿಯಿರಿ $m, n \in \mathbb{Z}$ ಆದಾಗ, ಅದನ್ನು 189 m+243 n ರೂಪದಲ್ಲಿ ಬರೆಯಿರಿ.
 - b) 2000 ಪೂರ್ಣಾಂಕದ ಎಲ್ಲಾ ಧನಾತ್ಮಕ ವಿಭಾಜಕಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

24. a)
$$\begin{vmatrix} 1 & ab & a+b \\ 1 & bc & b+c \\ 1 & ca & c+a \end{vmatrix} = (a-b)(b-c)(c-a)$$
 మందు నాధిసి.

b) ಕ್ರೇಮರನ ಪದ್ಧತಿಯಿಂದ ಈ ಕೆಳಗಿನ ಸರಳ ಸಮೀಕರಣಗಳ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ :

$$x - 2y = 8$$
 ಮತ್ತು $2x - y = 7$.

25. $Q - \{-1\}$, -1 ನ್ನು ಬಿಟ್ಟು ಉಳಿದ ಭಾಗಲಬ್ದ ಸಂಖ್ಯೆಗಳ ಗಣವಾಗಿದ್ದು, * ದ್ವಿಮಾ - ಕ್ರಿಯೆಯು $Q - \{-1\}$ ಮೇಲಿನ a * b = a + b + ab, $\forall a, b \in Q - \{-1\}$ ಆದಾಗ, $(Q - \{-1\}, *)$ ಒಂದು ಪರಿವರ್ತನೀಯ ಸಂಕುಲ ಎಂದು ಸಾದಿಸಿ.

26. a) $\overrightarrow{a} = 3\hat{i} + \hat{j} - 2\hat{k}, \overrightarrow{b} = -\hat{i} + 3\hat{j} + 4\hat{k}$ ಮತ್ತು

 $\overrightarrow{c}=4\,\widehat{i}-2\,\widehat{j}-6\,\widehat{k}$ ಆದರೆ, \overrightarrow{a} ಮತ್ತು \overrightarrow{b} ಗಳಿಗೆ ಸಮತಲವಾಗಿ ಮತ್ತು \overrightarrow{c} ಗೆ ಲಂಬವಾಗಿರುವ ಏಕ ಸದಿಶವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

- * b) $A \equiv (2, -3, 6)$ ಮತ್ತು $B \equiv (3, -1, -6)$ ಸ್ಥಾನ ಸದಿಶಗಳಾಗಿರುವ \overrightarrow{AB} ಸದಿಶದ ದಿಶಾ ಕೊಸೈನ್ಗಳನ್ನು (ಡೈರೆಕ್ಟ್ರನ್ ಕೊಸೈನ್) ಕಂಡುಹಿಡಿಯಿರಿ. 2
- II. ಈ ಕೆಳಗಿನವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಎರಡು ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ : $2 \times 5 = 10$
 - 27. a) $x^2 + y^2 + 2g_1 x + 2f_1 y + c_1 = 0$ ಮತ್ತು $x^2 + y^2 + 2g_2 x + 2f_2 y + c_2 = 0$ ವೃತ್ತಗಳ ಮೂಲಾಕ್ಷದ ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ ಹಾಗೂ ಎರಡು ವೃತ್ತಗಳ ಮೂಲಾಕ್ಷವು ವೃತ್ತಗಳ ಕೇಂದ್ರ ಬಿಂದುಗಳನ್ನು ಸೇರಿಸುವ ಸರಳರೇಖೆಗೆ ಲಂಬವಾಗಿರುತ್ತದೆ ಎಂದು ತೋರಿಸಿ.
 - b) (2, 1) ಬಿಂದುವು ಕೇಂದ್ರವಾಗುಳ್ಳ ಮತ್ತು 3x + 4y 5 = 0 ಸರಳರೇಖೆಯನ್ನು ಸ್ಪರ್ಶಿಸುವ ವೃತ್ತದ ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
 - 28. a) $16x^2 + 9y^2 + 32x 36y 92 = 0$ ಶಂಕುಜದ ನಾಭಿಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. 3
 - b) $y^2 = 4ax$ ಪರವಲಯದ ಮೇಲಿನ (x_1, y_1) ಬಿಂದುವಿನಿಂದ ಅದರ ನಾಭಿ (a, 0) ಗೆ ಇರುವ ದೂರವು $x_1 + a$ ಆಗಿರುತ್ತದೆಂದು ತೋರಿಸಿ.
 - 29. a) $\cos^{-1} x \sin^{-1} x = \cos^{-1} (x \sqrt{3})$ ಸಮೀಕರಣವನ್ನು ಬಿಡಿಸಿ.
 - b) $\tan^2 x 4 \sec x + 5 = 0$ ರ ಸಾಮಾನ್ಯ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. 2

III. ಈ ಕೆಳಗಿನ ಯಾವುದಾದರೂ ಮೂರು ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ :

 $3 \times 5 = 15$

30. a) ಮೂಲತತ್ವದಿಂದ x ಗೆ ಅನುಗುಣವಾಗಿ cosec (4x) ಅನ್ನು ಅವಕಲಿಸಿ.

b) $y = (\tan x)^{\sin^{-1}x}$ ಆದರೆ, $\frac{dy}{dx}$ ಅನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

31. a) $\cos^{-1}\left[\frac{1-x^2}{1+x^2}\right]$ ಗೆ ಅನುಗುಣವಾಗಿ $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ ಅನ್ನು ಅವಕಲಿಸಿ. 3

b) $y = x (x^2 - 4)$ ಮತ್ತು $y = 2x^2 - 3x - 2$ ವಕ್ರರೇಖೆಗಳ ನಡುವಿನ ಛೇದನದಲ್ಲಿ x = 2x + 4 ಮರ್ಪಟ್ಟ ಕೋನವನ್ನು (1, -3) ಬಿಂದುವಿನಲ್ಲಿ ಕಂಡುಹಿಡಿಯಿರಿ.

32. a) $y = \sin (m \tan^{-1} x)$ පතාෆ්,

$$(1+x^2)^2 y_2 + 2x (1+x^2) y_1 + m^2 y = 0$$
 ಎಂದು ಸಾಧಿಸಿ.

b) $\int \frac{\mathrm{d}x}{x^2 - 6x + 8} \, \mathrm{d}x \, \mathrm{d}x$

b) $\int \frac{3x}{1+2x^4} \, \mathrm{d}x \, \pi \, \text{ tielomal} \, \text{totalballoul}.$

34. ಅನುಕಲನ ವಿಧಾನದಿಂದ $x^2 + y^2 = a^2$ ವೃತ್ತದ ವಿಸ್ತೀರ್ಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. 5

ವಿಭಾಗ - D

ಈ ಕೆಳಗಿನ ಯಾವುದಾದರೂ ಎರಡು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $2 \times 10 = 20$

- 35. a) ದೀರ್ಘವೃತ್ತವನ್ನು ಒಂದು ಬಿಂದುಪಥವಾಗಿ ವ್ಯಾಖ್ಯಿಸಿ ಮತ್ತು ಅದರ ಆದರ್ಶ ಸಮೀಕರಣವನ್ನು $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b) ರೂಪದಲ್ಲಿ ಕಂಡುಹಿಡಿಯಿರಿ.
 - $A = \begin{bmatrix} 10 & -7 \\ -5 & 4 \end{bmatrix}$ ಆದರೆ, ಕೇಲಿ-ಹ್ಯಾಮಿಲ್ಟನ್ ಪ್ರಮೇಯವನ್ನು ಉಪಯೋಗಿಸಿ A^{-1} ನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 36. a) n ನ ಎಲ್ಲಾ ಪರಿಮೇಯ ಸೂಚಕಾಂಕಗಳಿಗೆ ಡಿ ಮೋಯ್ ಪ್ರೆ ಪ್ರಮೇಯವನ್ನು ತಿಳಿಸಿ ಮತ್ತು ಸಾಧಿಸಿ. 6 $_{f e}$
 - b) $\tan x + \sec x = \sqrt{3}$ on π 1 and π 3 of π 3 of π 4 and π 5 of π 6 of π 8 of π 9 of π
- 37. a) 170 ಸೆಂ.ಮೀ. ಎತ್ತರವಿರುವ ಮನುಷ್ಯನು 4 ಮೀ. /ಸೆಕೆಂಡ್ ವೇಗದಲ್ಲಿ ಕ್ಷಿತಿಜಾಕ್ಷದಲ್ಲಿ ಒಂದು ದೀಪದ ಕಂಬದಿಂದ ದೂರ ನಡೆಯುವನು. 8-5 ಮೀ. ಎತ್ತರದ ಕಂಬದ ದೀಪದಿಂದ ಕ್ಷಿತಿಜಾಕ್ಷದಲ್ಲಿ ಉಂಟಾಗುವ
 - i) ಆತನ ನೆರಳಿನ ಉದ್ದದ ಬದಲಾವಣೆಯ ದರ ಮತ್ತು
 - ii) ಆತನ ನೆರಳಿನ ತುದಿಯ ಚಲನೆಯ ದರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. 6
 - b) ಸದಿಶ ಪದ್ಧತಿಯನ್ನು ಉಪಯೋಗಿಸಿಕೊಂಡು, ಯಾವುದೇ ತ್ರಿಭುಜ ABC ಯಲ್ಲಿ

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
 ಎందు నాధిసి.

b) (2y - 1) dx - (2x + 3) dy = 0 ಈ ಅವಕಲ ಸಮೀಕರಣದ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

ವಿಭಾಗ - E

ಈ ಕೆಳಗಿನ ಯಾವುದಾದರೂ ಒಂದು ಪ್ರಶ್ನೆಗೆ ಉತ್ತರಿಸಿ :

 $1 \times 10 = 10$

- 39. a) √3 + i ನ ಘನ ಮೂಲಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. ಇವುಗಳನ್ನು ಆರ್ಗಾಂಡ್ ಚಿತ್ರದಲ್ಲಿ ಗುರುತಿಸಿ. 4
 - ್ಟರಿ) $x^2 + y^2 2x 2y 7 = 0$ ಮತ್ತು $x^2 + y^2 + 4x + 2y + 1 = 0$ ವೃತ್ತಗಳ ಸಾಮಾನ್ಯ ಜ್ಯಾದ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. 4
 - c) ಸಮಶೇಷೀಯತೆಯ ವಿಧಾನದಿಂದ 32 × 127 × 44 ನ್ನು 7 ರಿಂದ ಭಾಗಿಸಿದಾಗ ಉಳಿಯುವ ಶೇಷವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

(ಶೇಷವು ಕನಿಷ್ಠ ಧನಾತ್ಮ ಕವಾಗಿರಬೇಕು)

2

- 40. a) ಒಂದು ಆಯತದ ನಾಲ್ಕು ಬದಿಗಳ ಮೊತ್ತವು ಸ್ಥಿರವಾಗಿದೆ. ಆ ಆಯತದ ವಿಸ್ತೀರ್ಣವು ಗರಿಷ್ಠವಾಗಬೇಕಾದರೆ ಅದು ಚಚ್ಚೌಕವಾಗಿರಬೇಕೆಂದು ತೋರಿಸಿ.

 - c) $y = \log_6 \sqrt{\cos x}$ ಆದರೆ, $\frac{dy}{dx}$ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Visit www.shaalaa.com for more question papers.

(English Version)

- Instructions: i) The question paper has five Parts A, B, C, D and E.

 Answer all the parts.
 - ii) Part A carries 10 marks, Part B carries 20 marks,
 Part C carries 40 marks, Part D carries 20 marks and
 Part E carries 10 marks.

PART - A

Answer all the ten questions

 $10 \times 1 = 10$

- 1. Find the number of incongruent solutions of $6x \equiv 3 \pmod{15}$.
- 2. If $A = \begin{bmatrix} 4 & 3 \\ 2 & 1 \end{bmatrix}$, find A + A
- 3. On R [the set of all real numbers] an operation * is defined by a*b=a+b+5, $\forall a,b\in R$. Examine whether * is a binary operation or not.
- 4. If $\overrightarrow{AB} = 3\hat{i} + 2\hat{j} + 6\hat{k}$ and $\overrightarrow{OA} = \hat{i} \hat{j} 3\hat{k}$, find the position vector of B.

Code No. 35

- 5. Find the length of the tangent to the circle $3x^2 + 3y^2 + 6x + 9y 2 = 0$ from the point P(1, 1).
- 6. If y = mx + c touches the parabola $y^2 = 4ax$, then write the coordinates of the point of contact.
- 7. Evaluate: $\sin \left[\frac{\pi}{3} \sin^{-1} \left(-\frac{1}{2} \right) \right]$.
- 8. Find the imaginary part of $e^{i\pi}$.
- 9. If $y = \sin \left(2 \sin^{-1} x \right)$, find $\frac{dy}{dx}$.
- 10. Evaluate: $\int_{0}^{\pi/2} \sin^2 x \, dx.$

PART - B

Answer any ten questions:

 $10 \times 2 =$

- 11. If $a \mid bc$ and the G.C.D. of a and b is 1, then prove that $a \mid c$.
- 12. If $A = \begin{bmatrix} 1 & 2 & 0 \\ -3 & 1 & -2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & -3 \\ 2 & 1 & 1 \end{bmatrix}$, find AB^T .
- 13. Construct the multiplication table for $G = \{1, \omega, \omega^2\}$, where ω is a current root of unity. Find the inverse of ω^2 .

- 14. Prove that, in a group (G, *), $(a * b)^{-1} = b^{-1} * a^{-1}$, $\forall a, b \in G$.
- 15. Show that the points whose position vectors are $2\hat{i} \hat{j} + \hat{k}$,

 $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form a right angled triangle.

- 16. Find the equation of the circle which is described on the diameter whose end points are (5, -7) and (7, -5).
- 17. Prove that $\sin^{-1} x + \cos^{-1} x = \frac{\pi}{2}$; $-1 \le x \le 1$.
- 18. If $x = \cos A + i \sin A$, $y = \cos B + i \sin B$, then show that $xy \frac{1}{xy} = 2 i \sin (A + B).$
- 19. If $y = \tan^{-1} \left[\sqrt{\frac{1 \cos x}{1 + \cos x}} \right]$, prove that $\frac{d^2 y}{dx^2} = 0$.
- 20. Find the point on the curve $y^2 = 3 4x$, where the tangent is parallel to the line 2x + y 2 = 0.
- 21. Evaluate: $\int \frac{\cos 2x}{\cos^2 x \cdot \sin^2 x} dx.$
- 22. Form the differential equation for the family of straight lines passing through the origin having slope m.

PART - C

I. Answer any three questions:

$$3 \times 5 = 15$$

- 23. a) Find the G.C.D. of 189 and 243. Express it in the form 189 m + 243 n, where $m, n \in \mathbb{Z}$.
 - b) Find the number positive divisors of 2000.
- 24. a) Prove that $\begin{vmatrix} 1 & ab & a+b \\ 1 & bc & b+c \\ 1 & ca & c+a \end{vmatrix} = (a-b)(b-c)(c-a).$
 - b) Solve by Cramer's Rule: x 2y = 8 and 2x y = 7.
- 25. Let $Q \{-1\}$ be the set of rational numbers except -1 and *1 a binary operation on $Q \{-1\}$ defined by a*b = a+b+a $\forall a, b \in Q \{-1\}$. Show that $(Q \{-1\}, *)$ is an Abelia group.
- 26. a) Given that the vectors $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k}$, $\vec{b} = -\hat{i} + 3\hat{j} + \hat{i}$ and $\vec{c} = 4\hat{i} 2\hat{j} 6\hat{k}$, find a unit vector coplanar with \vec{a} a \vec{b} but perpendicular to \vec{c} .
 - b) Find the direction cosines of the vector \overrightarrow{AB} , where

$$A \equiv (2, -3, 6)$$
 and $B \equiv (3, -1, -6)$.

II. Answer any two questions:

 $2 \times 5 = 10$

27. a) Derive the equation of the radical axis of two circles

$$x^2 + y^2 + 2g_1 x + 2f_1 y + c_1 = 0$$
 and $x^2 + y^2 + 2g_2 x + 2f_2 y + c_2 = 0$.

Also show that the radical axis of the two circles is perpendicular to the line joining their centres.

- b) Find the equation of the circle having its centre at (2, 1) and touching the line 3x + 4y 5 = 0.
- 28. a) Find the foci of the conic $16x^2 + 9y^2 + 32x 36y 92 = 0$. 3
 - b) Show that the distance of any point (x_1, y_1) on the parabola $y^2 = 4ax$ from the focus (a, 0) is $x_1 + a$.
- 29. a) Solve: $\cos^{-1} x \sin^{-1} x = \cos^{-1} (x \sqrt{3})$.
 - b) Find the general solution of $\tan^2 x 4 \sec x + 5 = 0$.
- III. Answer any three of the following questions: $3 \times 5 = 15$
 - 30. a) Differentiate cosec (4x) with respect to x, using first principles.

b) If $y = (\tan x)^{\sin^{-1} x}$, find $\frac{dy}{dx}$.

14

- 31. a) Differentiate $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$ with respect to $\cos^{-1}\left[\frac{1-x^2}{1+x^2}\right].$
 - b) Find the angle of intersection of the curves $y = x(x^2 4)$ and $y = 2x^2 3x 2$ at (1, -3).
 - 32. a) If $y = \sin (m \tan^{-1} x)$, then show that $(1 + x^2)^2 y_2 + 2x (1 + x^2) y_1 + m^2 y = 0.$
 - b) Evaluate: $\int \frac{\mathrm{d}x}{x^2 6x + 8}$.
 - 33. a) Evaluate: $\int \frac{x-1}{(x-2)(x-3)} dx.$
 - b) Evaluate: $\int \frac{3x}{1+2x^4} dx.$
 - 34. Find the area of the circle $x^2 + y^2 = a^2$ by the method integration.

PART - D

Answer any two of the following questions:

 $2 \times 10 =$

- 35. a) Define an ellipse as a locus. Derive its equation in standard form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ (a > b).$
 - b) Find A^{-1} using Cayley-Hamilton theorem if $A = \begin{bmatrix} 10 & -7 \\ -5 & 4 \end{bmatrix}$.
- 36. a) State and prove De Moivre's theorem for all rational values of n.
 - b) Find the general solution of $\tan x + \sec x = \sqrt{3}$.

- 37. a) A man 170 cm tall, walks at the rate of 4 m/sec away from the source of light which is hung 8.5 m above the horizontal ground.
 - i). How fast is the length of his shadow increasing?
 - ii) How fast is the tip of his shadow moving?
 - b) Prove for any triangle ABC, the sine rule $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ by vector method.
- 38. a) Show that $\int_{0}^{\pi} \frac{x \tan x}{\sec x + \cos x} dx = \frac{\pi^2}{4}.$
 - b) Solve: (2y-1) dx (2x+3) dy = 0.

PART - E

Answer any one of the following questions:

 $1 \times 10 = 10$

- 39. a) Find the cube roots of $\sqrt{3} + i$. Respresent them on the Argand diagram.
 - b) Find the length of the common chord of the two intersecting circles $x^2 + y^2 2x 2y 7 = 0 \text{ and } x^2 + y^2 + 4x + 2y + 1 = 0.$
 - c) Find the remainder obtained when $32 \times 127 \times 44$ is divided by 7 using the method of congruences.

(The remainder should be least positive) 2

- 40. a) The sum of the four sides of a rectangle is constant. Show that the area of the rectangle is maximum when it is a square.
 - b) Evaluate: $\int \tan^4 x \, dx$.
 - c) If $y = \log_6 \sqrt{\cos x}$, find $\frac{dy}{dx}$.

Visit www.shaalaa.com for more question papers.