Mathematics

2010 July

Science 2nd PUC (12th)

University Exam

Department of Pre-University

Education Karnataka (PUE Board)

shaalaa.com

Total No. of Questions: 40]

Total No. of Printed Pages: 16]

June/July, 2010

MATHEMATICS

(Kannada and English Versions)

Time: 3 Hours 15 Minutes]

1.

[Max. Marks : 100

(Kannada Version)

- ಸೂಚನೆ: i) ಈ ಪ್ರಶ್ನೆ ಪತ್ರಿಕೆಯಲ್ಲಿ A, B, C, D ಮತ್ತು E ಎಂಬ ಐದು ವಿಭಾಗಗಳಿವೆ. ಎಲ್ಲಾ ವಿಭಾಗಗಳನ್ನು ಉತ್ತರಿಸಿ.
 - ii) ವಿಭಾಗ A ಗೆ 10 ಅಂಕಗಳು, ವಿಭಾಗ B ಗೆ 20 ಅಂಕಗಳು, ವಿಭಾಗ C ಗೆ 40 ಅಂಕಗಳು, ವಿಭಾಗ D ಗೆ 20 ಅಂಕಗಳು ಮತ್ತು ವಿಭಾಗ E ಗೆ 10 ಅಂಕಗಳಿರುತ್ತವೆ.

ವಿಭಾಗ – A

ಈ ಕೆಳಗಿನ ಎಲ್ಲಾ ಹತ್ತು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $10 \times 1 = 10$

- 1. $3(x+1) \equiv (x+3) \pmod 4$ ನ್ನು ತೃಷ್ಟಿಪಡಿಸುವ ಕನಿಷ್ಠ ಧನಾತ್ಮಕ ಪೂರ್ಣಾಂಕ x ಅನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 2. $A = \begin{bmatrix} x+2 & y+3 \\ 0 & 0 \end{bmatrix}$ ಅದಿಶ ಮಾತ್ಯಕೆ ಆದರೆ, x ಮತ್ತು y ನ ಬೆಲೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 3. ಎಲ್ಲಾ ಪೂರ್ಣಾಂಕ ಗಣದಲ್ಲಿ "*" ದ್ವಿಮಾನ ಪರಿಕ್ರಿಯೆ ಮೇಲೆ a*b=a+b+5 ಎಂದು ನಿರೂಪಿತವಾಗಿದ್ದರೆ, ಅದರ ಏಕದ ಸಂಖ್ಯೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

- 4. $\vec{a} = 3\hat{i} + 4\hat{j}$ ಸಧಿಶದ ದಿಕ್ಕಿನಲ್ಲಿರುವ ಏಕಸದಿಶವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 5. $x^2 + y^2 3x + 3y + 1 = 0$ ವೃತ್ತಕ್ಕೆ (1, 2) ಬಿಂದುವಿನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕದ ಉದ್ಪ ಕಂಡುಹಿಡಿಯಿರಿ.
- 6. $\frac{x^2}{9} + \frac{y^2}{4} = 1$ ದೀರ್ಘವೃತ್ತದ ಉತ್ಯೇಂದ್ರತೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 7. $\sin\left(\tan^{-1}\frac{3}{4}\right)$ ර ස්ළු නෙන ?
- 8. $\sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$ ಮಿಶ್ರ ಊಹ್ಯ ಸಂಖ್ಯೆಯ ಕೋನಾಂಕವನ್ನು ತಿಳಿಸಿ.
- 9. x ಗೆ ಅನುಗುಣವಾಗಿ log e sinx ಅನ್ನು ಭೇದಪಡಿಸಿ
- 10. $\int_{0}^{\pi/4} \sec x \cdot \tan x \, dx$ ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

ವಿಭಾಗ - B

ಈ ಕೆಳಗಿನವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಹತ್ತು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

10 ×

- 11. $a \mid b$ ಮತ್ತು $a \mid c$ ಆದಾಗ, x ಮತ್ತು y ಪೂರ್ಣಾಂಕಗಳಿಗೆ $a \mid bx + cy$ ಎಂದು ತೋರೆ
- 12. ಕ್ರೇಮರನ ನಿಯಮವನ್ನು ಉಪಯೋಗಿಸಿ 2x + 3y = 7 ಮತ್ತು x y = 1 ಸಮೀಕ್ತಿ x ಮತ್ತು y ಬೆಲೆಗಳನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

- (G, *) ಸಂಕುಲದಲ್ಲಿನ ಏಕದವು ಏಕೈಕವಾಗಿದೆ ಎಂದು ಸಾಧಿಸಿ.
- 14. \overrightarrow{d} ಒಂದು ಏಕಸದಿಶವಾಗಿದ್ದು $(\overrightarrow{x} \overrightarrow{d}) \cdot (\overrightarrow{x} + \overrightarrow{d}) = 8$ ಆಗಿದ್ದರೆ, $|\overrightarrow{x}|$ ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 15. (2.3) ಮತ್ತು (3,2) ವ್ಯಾಸದ ತುದಿಬಿಂದುಗಳಾಗಿ ವೃತ್ತದ ಮೂಲಕ ತುದಿಗಳು ಹಾದುಹೋಗುವ ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- $16. x^2 + 16y = 0$ ಪರವಲಯದ ನಾಭಿಯನ್ನು ಗುರುತಿಸಿ.
- 17. $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$ ಆದರೆ, $x^2 + y^2 = 1$ ಎಂದು ತೋರಿಸಿ.
- 18. 2 + 2i ಮಿಶ್ರ ಊಹ್ಮ ಸಂಖ್ಯೆಯ ಧ್ರುವೀಯ ರೂಪವನ್ನು ಜರೆಯಿರಿ.
- 19. xಗೆ ಅನುಗುಣವಾಗಿ x × ಅನ್ನು ಭೇದಪಡಿಸಿ.

H

) 20. (2.1) ಬಿಂದುವಿನಿಂದ $y=x^3+x^2-11$ ವಕ್ರರೇಖೆಗೆ ಉಪಸ್ಪರ್ಶಕ ಹಾಗೂ ಉಪಲಂಬರೇಖೆಯ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

- 21. xಗೆ ಅನುಗುಣವಾಗಿ x. $\log x$ ಅನ್ನು ಅನುಕಲಿಸಿ.
- 22. $y^2 = 4ax$ ಸಮೀಕರಣದಲ್ಲಿನ a ಎಂಬ ಸ್ವೇಚ್ಛಾ ಸ್ಥಿ ರಾಂಕವನ್ನು ವಿಲೋಪಿಸಿ ಅವಕಲಿತ ಸಮೀಕರಣವ ಕಂಡುಹಿಡಿಯಿರಿ.

ವಿಭಾಗ - C

ಈ ಕೆಳಗಿನವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಮೂರು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $3 \times 5 = 1$

- 23. 30400 ಪೂರ್ಣಾಂಕದ ಎಲ್ಲಾ ಧನಾತ್ಮಕ ವಿಭಾಜಕಗಳ ಒಟ್ಟು ಸಂಖ್ಯೆಯನ್ನು ಮತ್ತು ಎಲಾ ಧನಾತ್ಮಕ ವಿಭಾಜಕಗಳ ಮೊತ್ತವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
- 24. ಕೋಶ ಪದ್ಧತಿ ಸಹಾಯದಿಂದ ಈ ಕೆಳಗಿನ ಸಮೀಕರಣದ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ :

$$x + y - z = 1$$
, $3x + y - 2z = 3$, $x - y - z = -1$.

- 25. G^+ ಎಲ್ಲಾ ಅಕರಣೀಯ ಸಂಖ್ಯೆಗಳ ಗಣವಾಗಿದ್ದರೆ ಮತ್ತು * ದ್ಜಿ ಮಾನ ಪರಿಕ್ರಿಯೆ G^+ ಮೇಲಿನ ಎಲ್ಲಾ $a,b\in G^+$ ಗಾಗಿ $a*b=\frac{2ab}{3}$ ಯಿಂದ ನಿರೂಪಿತವಾಗಿದ್ದರೆ, * ಅನುಗುಣವಾಗಿ G^+ ಒಂದು ಅಬೀಲಿಯನ್ ಸಂಕುಲವಾಗಿರುತ್ತದೆ ಎಂದು ಸಾಧಿಸಿ.
- 26. a) ಈ ಕೆಳಗಿನ ನಾಲ್ಕು ಬಿಂದುಗಳು ಒಂದೇ ಸಮತಲದಲ್ಲಿದೆ ಎಂದು ತೋರಿಸಿ :

A(2,3,-1), B(1,-2,3), C(3,4,-2) ಮತ್ತು D(1,-6,6)

b) $\vec{a}=3\hat{t}+\hat{j}-2\hat{k}$ ಮತ್ತು $\vec{B}=2\hat{t}+3\hat{j}-\hat{k}$ ಈ \vec{d} ಮತ್ತು \vec{b} ಎರಡೂ ಸದಿಶಗಳಿಗೆ ಲಂಬವಾಗಿರುವ ಒಂದು ಏಕಸದಿಶವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

II. ಈ ಕೆಳಗಿನವುಗಳಲ್ಲಿ ಯಾವುದಾದರೂ ಎರಡು ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ :

 $2 \times 5 = 10$

27. a) $x^2 + y^2 + 2gx + 2fy + c = 0$ ವೃತ್ತದ ಮೇಲೆ $(x_1 y_1)$ ಎಂಬ ಬಿಂದುವಿನಿಂದ ಎಳೆದ ಸ್ಪರ್ಶಕದೆ ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

b) $x^2 + y^2 - 2x + 6y = 0$

$$x^2 + y^2 - 4x - 2y + 6 = 0$$

 $x^2 + y^2 - 12x + 2y + 30 = 0$ ದೃತ್ತಗಳ ಮೂಲಾಕ್ಷ ಕೇಂದ್ರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

- 28. a) (3,5) ಶೃಂಗ ಬಿಂದು ಹಾಗೂ ನಾಭಿ (3,2) ಇರುವ ಪರವಲಯದ ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
 - b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) ದೀರ್ಘವೃತ್ತದ ಮೇಲಿನ ಯಾವುದೇ ಬಿಂದುವಿನಿಂದ ನಾಭಿ ದೂರಗಳ ಮೊತ್ತವು 2a ಗೆ ಸಮವಾಗಿರುತ್ತದ ಎಂದು ಸಾಧಿಸಿ.
- 29. a) $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$ ಆದರೆ. x + y + z = xyz ಎಂದು ಸಾಧಿಸಿ.
 - b) $\tan 2x + \tan x = 1$ ರ ಸಾಮಾನ್ಯ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

III. ಈ ಕೆಳಗಿನ ಯಾವುದಾದರೂ ಮೂರು ಪ್ರಶ್ನೆಗಳಿಗೆ ಉತ್ತರಿಸಿ :

 $3 \times 5 = 15$

30. a) ಮೂಲತತ್ವದಿಂದ x ಗೆ ಅನುಗುಣವಾಗಿ a^x ಅನ್ನು ಭೇದಪಡಿಸಿ.

b) $\sqrt{x} + \sqrt{y} = 5$ ಆದರೆ, (4.9) ಬಂದುವಿನಲ್ಲಿ $\frac{\mathrm{d}y}{\mathrm{d}x}$ ಅನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ. 2

31. a) $y = e^{m\cos^{-1}x}$ ಆದರೆ.

$$(1-x^2)y_2-xy_1-m^2y=0$$
 ಎಂದು ಸಾಧಿಸಿ.

b) $y = x^2 - 4x + 2$ ವಕ್ರರೇಖೆಯ ಮೇಲಿನ (4, 2) ಬಿಂದುವಿನಲ್ಲಿ ಒಂದು ಲಂಬರೇಖೆಯ

ಸಮೀಕರಣವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

2

32. a)
$$\int \frac{dx}{5+4\cos x}$$
 ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

b) $\int \frac{1-\tan x}{1+\tan x} \, dx$ ನ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

33. a) $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots}}}$ ಆದರೆ.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\cos x}{2y-1}$$
 ಎಂದು ತೋರಿಸಿ

b) $\int \frac{dx}{x^2 + 4x + 9} \quad \forall \ \text{ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.}$

34. ಅನುಕಲನ ವಿಧಾನದಿಂದ $y^2 = 6x$ ಹಾಗೂ $x^2 = 6y$ ಪರವಲಯಗಳ ನಡುವಿನ ಕ್ಷೇತ್ರಫಲವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

5

3

ವಿಭಾಗ - D

ಈ ಕೆಳಗಿನ ಯಾವುದಾದರೂ ಎರಡು ಪ್ರಶ್ನೆಗಳನ್ನು ಉತ್ತರಿಸಿ :

 $2 \times 10 = 20$

- 35. a) ಅತಿಪರವಲಯವನ್ನು ಒಂದು ಬಿಂದುಪಥವಾಗಿ ವ್ಯಾಖ್ಯಿಸಿ ಮತ್ತು ಅದರ ಸಮೀಕರಣವನ್ನು $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ ಆದರ್ಶ ಗೂಪದಲ್ಲಿ ಕಂಡುಹಿಡಿಯಿರಿ.
 - b) $\cos x + \cos 2x + \cos 3x = 0$ ತ್ರಿಕೋನಮಿತಿ ಸಮೀಕರಣದ ಸಾಮಾನ್ಯ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

4

36. a) $\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z \, \forall \, dd$,

cos 2x + cos 2y + cos 2z = ೧ ಮತ್ತು

 $\sin 2x + \sin 2y + \sin 2z = 0$ and $\cos 2x + \sin 2x = 0$

$$\cos^2 x + \cos^2 y + \cos^2 z = \frac{3}{2}$$
 ωοσώ πηθήλ.

b)
$$\begin{bmatrix} a-3b-3c & 4b & 4c \\ 4a & b-3c-3a & 4c \\ 4a & 4b & c-3a-3b \end{bmatrix} = 9(a+b+c)^3 \text{ and } 3c$$

- 37. a) ಒಂದು ತಲೆಕೆಳಗಾದ ಶಂಕುವಿನ ಆಕಾರದ ನೀರಿನ ಪಾತ್ರಗೆ ನಿಮಿಷಕ್ಕೆ 5 ½ c.c. ದರದಲ್ಲಿ ನೀರು ಸುರಿಯುತ್ತಿದೆ. ಈ ಪಾತ್ರೆಯ ತಳ ವರ್ತುಲಾಕಾರವಾಗಿದ್ದು, ತ್ರಿಜ್ಕವು 6 ಸೆಂ.ಮೀ. ಹಾಗೂ ಎತ್ತರ 12 ಸೆಂ.ಮೀ.ಗಳಾಗಿದ್ದು, ಆಳ 3½ ಸೆಂ.ಮೀ. ಇದ್ದಾಗ ನೀರಿನ ಮಟ್ಟದ ಏರುವಿಕೆ ದರವನ್ನು ಹಾಗೂ ನೀರಿನ ಮಟ್ಟದ ಏರುವಿಕೆ ದರವನ್ನು ಹಾಗೂ ನೀರಿನ ಮಟ್ಟದ ವೃತ್ತಾಕಾರದ ಮೇಲೈ ವಿಸ್ತೀರ್ನದ ಹಚ್ಚುವ ದರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
 - b) ಸದಿಶ ವಿಧಾನದಿಂದ ಅರ್ಧವೃತ್ತದ ಒಳಗಿನ ಕೋನವು 90° ಇರುವುದೆಂದು ಸಾಧಿಸಿ. 4

38. a) $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(a-x) dx$ ಎಂದು ಸಾಧಿಸಿ ಹಾಗೂ ಇದನ್ನು ಉಪಯೋಗಿಸಿ,

$$\int\limits_{0}^{\infty} \frac{x \, \mathrm{d}x}{(1+x)(1+x^{2})} \, \mathrm{d}x \, \mathrm$$

b) $\left(e^{y}+1\right)\cos x\,\mathrm{d}x+e^{y}$. $\sin x\,\mathrm{d}y=0$ ಈ ಅವಳಲಿತ ಸಮೀಕರಣದ ಪರಿಹಾರವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.

Turn over

ವಿಭಾಗ - E

ಈ ಕೆಳಗಿನ ಯಾವುದಾದರೂ ಒಂದು ಪ್ರಶ್ನೆಗೆ ಉತ್ತರಿಸಿ :

 $1 \times 10 = 10$

- 39. a) 1 + √3 (ನ ಘನಮೂಲಗಳನ್ನು ಕಂಡುಹಿಡಿದು ಅವುಗಳ ನಿರಂತರ ಗುಣಲಬ್ಭವನ್ನು (Continued product) ಕಂಡುಹಿಡಿಯಿರಿ.
 - b) $x^2 + y^2 + 4x + 6y 12 = 0$ ವೃತ್ತಕ್ಕೆ 3x + 4y 2 = 0 ರೇಖೆಯಿಂದ ಉತ್ಪತ್ತಿಯಾದ ಜ್ಯಾದ ಉದ್ದವನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
 - c) 2 ³¹ ನ್ನು 7 ರಿಂದ ಭಾಗಿಸಿದಾಗ ಬರುವ ಧನಾತ್ಮಕ ಶೇಷವನ್ನು ಸಮಶೇಷಿಯತೆ ವಿಧಾನದಿಂದ ಕಂಡುಹಿಡಿಯಿರಿ.
- \vec{a} . \vec{b} ಮತ್ತು \vec{c} ಮೂರು ಬೇರೆ ಬೇರೆ ಸದಿಶಗಳಾಗಿರಲಿ ಹಾಗೂ $|\vec{a}|=2$. $|\vec{b}|=3$. $|\vec{c}|=4$ ಮತ್ತು ಪ್ರತಿಯೊಂದು ಸದಿಶವು ಉಳಿದೇಡು ಸದಿಶಗಳ ಮೊತ್ತಕ್ಕೆ ಸಮನಾಗಿದ್ದರೆ, $|\vec{a}+\vec{b}+\vec{c}|$ ಯ ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
 - b) ಕೇಲಿ-ಹ್ಯಾಮಿಲ್ಬನ್ ಪ್ರಮೇಯದಿಂದ $A = \begin{bmatrix} -3 & 2 \\ -5 & 1 \end{bmatrix}$ ಕೋEರ A 3 ಬೆಲೆಯನ್ನು ಕಂಡುಹಿಡಿಯಿರಿ.
 - c) ಎರಡು ಸಂಖ್ಯೆಗಳ ಮೊತ್ತನ್ನು 40 ಆಗಿದೆ. ಅವುಗಳ ಗುಣಲಬ್ದವು ಗರಿಷ್ಠ ಸಂಖ್ಯೆ ಆಗಬೇಕಾದರೆ ಪ್ರತಿಯೊಂದು ಸಂಖ್ಯೆಗಳ ಬೆಲೆ ಕಂಡುಹಿಡಿಯಿರಿ.

(English Version)

- Instructions i) The question paper has five Parts A, B, C, D and E.

 Answer all the parts.
 - ii) Part A carries 10 marks. Part B carries 20 marks.
 Part C carries 40 marks. Part D carries 20 marks and
 Part E carries 10 marks.

PART - A

Answer all the ten questions

 $10 \times 1 = 10$

- 1. Find the least positive x integer satisfying $3(x+1) \equiv (x+3) \pmod{4}$.
- 2. If $A = \begin{bmatrix} x+2 & y+3 \\ 0 & 6 \end{bmatrix}$ is a scalar matrix, find x & y.
- 3. On the set of all integers a binary operation "*" is defined by a * b = a + b + 5, find the identity element.
- 4. Find the unit vector in the direction of the vector $\vec{a} = 3\hat{i} + 4\hat{j}$.
- 5. Find the length of the tangent to the circle $x^2 + y^2 3x + 3y + 1 = 0$ from the point (1, 2).

- 6. Find the eccentricity of the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$.
- 7. Find the value of $\sin \left(\tan^{-1} \frac{3}{4} \right)$
- 8. Find the amplitude of the complex number $\sin \frac{\pi}{3} + i \cos \frac{\pi}{3}$
- 9. Differentiate $\log_e e^{\sin x}$ with respect to x.
- 10. Evaluate $\int_{0}^{\pi/4} \sec x \cdot \tan x \, dx$

PART - B

Answer any ten questions

 $10 \times 2 = 20$

- 11. If $a \mid b$ and $a \mid c$, show that $a \mid bx + cy$ where x and y are any two integers.
- 12. Find the value of x and y by Cramer's rule given 2x + 3y = 7. x y = 1.
- 13. In a group (G, *) prove that identity element is unique.
- 14. If \vec{a} a unit vector and $(\vec{x} \vec{a}) \cdot (\vec{x} + \vec{a}) = 8$, find $|\vec{x}|$.
- 15. Find the equation of the circle passing through the ends of the diameter whose end points are (2, 3) and (3, 2).
- 16. Find the focus of the parabola $x^2 + 16y = 0$.

Visit www.shaalaa.com for more question papers.

- 17. If $\sin^{-1} x + \sin^{-1} y = \frac{\pi}{2}$. show that $x^2 + y^2 = 1$.
- 18. Express the complex number 2 + 2t in the polar form.
- 19. Differentiate x^x with respect to x.
- 20. Find the length of subtangent and subnormal to the curve $y=x^3+x^2-11$ at (2, 1).
- 21. Integrate $x \cdot \log x$ with respect to x.
- 22. Form the differential equation by eleminating the arbitrary constant a from the equation $y^2 = 4ax$.

I. Answer any three questions:

r

$$3 \times 5 = 15$$

- 23. Find the number of positive divisors and sum of all positive divisors of the integer 30400.
- 24. Solve by matrix method:

$$x + y - z = 1$$
, $3x + y - 2z = 3$, $x - y - z = -1$.

25. If Q^+ is the set of all positive rational numbers and a binary operation "*" defined on Q^+ by $a*b=\frac{2ab}{3}$ for all $a,b\in Q^+$, prove that Q^+ is an Abelian group with respect to "*".

- 26. a) Show that the points A(2, 3, -1), B(1, -2, 3), C(3, 4, -2) and D(1, -6, 6) are coplanar.
 - b) Find the unit vector perpendicular to both \vec{a} & \vec{b} given $\vec{a} = 3\hat{i} + \hat{j} 2\hat{k}, \vec{b} = 2\hat{i} + 3\hat{j} \hat{k}.$
- II. Answer any two questions:

 $2 \times 5 = 10$

- 27. a) Derive the equation of the tangent to the circle $x^2 + y^2 + 2gx + 2fy + c = 0 \text{ at a point } \left(x_1 \, \underline{\iota}_1\right) \text{ on it }.$
 - b) Find the radical centre of the circles

$$x^2 + y^2 - 2x + 6y = 0$$

$$x^2 + y^2 - 4x - 2y + 6 = 0$$

$$x^2 + y^2 - 12x + 2y + 30 = 0$$

- 28. a) Find the equation of the parabola having vertex at (3, 5) and focus at (3, 2).
 - b) Prove that the sum of the focal distances from any point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (a > b) is equal to 2a

29. a) If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, prove that x + y + z = xyz. Code No. 35

3

Find the general solution of $\tan 2x + \tan x = 1$. 2

III. Answer any three of the following questions :

 $3 \times 5 = 15$

30. a) Differentiate a^x with respect to x from first principle. 3

b) If $\sqrt{x} + \sqrt{y} = 5$ then find $\frac{dy}{dx}$ at the point (4.9). 2

31. a) If $y = e^{m\cos^{-1}x}$ then prove that

$$(1-x^2)/y_2-xy_1-m^2y=0.$$
 3

Find the equation of the normal to the curve $y = x^2 - 4x + 2$ at the point (4, 2). 2

Evaluate $\int \frac{dx}{5 + 4 \cos x}$ 3

2

33. a) If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + \dots + \infty}}}$ then

prove that $\frac{dy}{dx} = \frac{\cos x}{2y - 1}$. 3

b) Evaluate $\int \frac{dx}{x^2 + 4x + 6}$. 2

34. Find the area enclosed between the parabolas $y^2 = 6x$ and $x^2 = 6y$

by the method of integration.

5

PART - D

Ariswer any two of the following questions:

 $2 \times 10 = 20$

- 35. a) Define a hyperbola as a locus and derive the equation of the hyperbola in the standard form $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$.
 - b) Find the general solutions for the trigonometric equation $\cos x + \cos 2x + \cos 3x = 0.$
- 36. a) If $\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$ then prove that

 $\cos 2x + \cos 2y + \cos 2z = 0$

 $\sin 2x + \sin 2y + \sin 2z = 0$

and $\cos^2 x + \cos^2 y + \cos^2 z = 3/2$

6

b) Prove that

$$\begin{bmatrix} a-3b-3c & 4b & 4c \\ 4a & b-3c-3a & 4e \\ 4a & 4b & c-3a-3b \end{bmatrix} = 9(a+b+c)^3. \quad 4$$

37. a) Water is poured into an inverted conical vessel of which the radius of base is 6 cm and height is 12 cm at the rate of $5\frac{1}{2}$ c.c. per second.

At what rate is the water level rising at the instart, when the depth is $3\frac{1}{2}$ cm? Also find the rate of increase in the surface area of the water level at that instant.

b) Prove by vector method that the angle in a semicircle is equal to 90°.

4

38. a) Prove that $\int_{0}^{a} f(x) dx = \int_{0}^{a} f(\alpha - x) dx$ and hence evaluate

$$\int_{0}^{\infty} \frac{x \, \mathrm{d}x}{(1+x)(1+x^2)}.$$

b) Solve the differential equation

1.

$$(e^{y} + 1) \cos x \, dx + e^{y} \cdot \sin x \, dy = 0.$$

PART - E

Answer any one of the following questions:

$$1 \times 10 = 10$$

- 39. a) Find the cube roots of $1 + \sqrt{3}i$ and find the continued product of the roots.
 - b) Find the length of the chord intercepted by the circle

$$x^2 + y^2 + 4x + 6y - 12 = 0$$
 and $3x + 4y - 2 = 0$.

- Find the positive remainder obtained when 2 31 is divided by 7 using the method of congruence.
- 40. a) Let \vec{a} , \vec{b} and \vec{c} be any three vectors such that $|\vec{a}| = 2$, $|\vec{b}| = 3$, $|\vec{c}| = 4$ and each vector is equal to the sum of the other two vectors; find the value of $|\vec{a} + \vec{b}| + |\vec{c}|$.

[Turn over

Visit www.shaalaa.com for more question papers.

- b) Find A^3 using Cayley-Hamilton theorem given $A = \begin{bmatrix} -3 & 2 \\ -5 & 1 \end{bmatrix}$. 4
- c) The sum of two numbers is 40. Find the numbers when their product is maximum.

Visit www.shaalaa.com for more question papers.