AMIETE - ET (OLD SCHEME)

Code: AE11 Time: 3 Hours

JUNE 2011

Subject: CONTROL ENGINEERING

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q.1 must be written in the space provided for it in the answer book supplied and nowhere else.
- The answer sheet for the Q.1 will be collected by the invigilator after 45 Minutes of the commencement of the examination.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

r(t) input

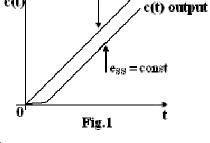
- a. For the second-order system $s^2 + 3s + 20 = 0$, with a damping ζ of 0.336, the value of damped natural frequency (rad/s) is:
 - **(A)** 4.21

(B) 8.42

(C) $\sqrt{20}$

- **(D)** $3\sqrt{20}$
- b. Constant-M circle has infinite radius with centre at infinity on the real axis, i.e. a straight line parallel to the imaginary axis of the G(s)-plane for:
 - **(A)** M < 1

(B) M = 0


(C) M = 1

- **(D)** M > 1
- c. The steady-state error e_{ss} for a unit-ramp input is constant (as in Fig.1) for a system of Type:
 - **(A)** 2

(B) 1

(C) 0

- **(D)** 3
- d. The overall transfer function of Fig.2 is:

asymptote

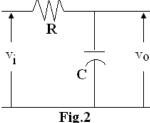

0.1

Fig. 3

20 dB/decade

ω, rad/s

- (A) RCs
- **(B)** $\frac{1}{RCs}$
- (**C**) 1+RCs
- **(D)** $\frac{1}{1 + RCs}$

N. dB

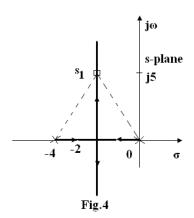
0.01

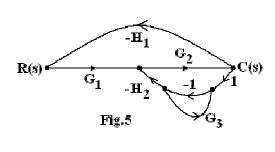
 $\mathbf{r}(t)$

- e. The Bode asymptote plot of Fig.3 refers to the system with G(s) equal to:
 - (**A**) 1+0.1s
 - **(B)** 1+10s
 - (C) 0.01+10s
 - **(D)** 0.1+0.01s
- f. The root-locus of the system $G(s) = \frac{k}{s(s+4)}$

shown in Fig.4 gives a value of k at point s_1 equal to:

 (\mathbf{A}) 4


(B) 16


(C) 25

(D) 29

AE11 / JUNE - 2011

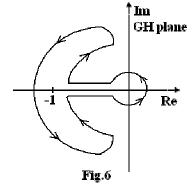
1

- g. A system with characteristic equation $4s^3 + 2s^2 + 100s + k = 0$ is stable by Routh-Hurwitz criterion if:
 - (A) 0 < k < 50

(B) 0 < k < 100

(C) 50 < k < 100

- **(D)** 0 < k < 200
- h. In the signal-flow graph of Fig.5, the number of pairs of non-touching loops is:
 - **(A)** 2

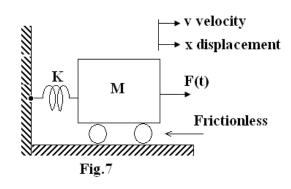

(B) 1

(C) 0

- **(D)** 3
- i. The Nyquist plot for $G(s) = \frac{5}{s(s-1)}$ shown in

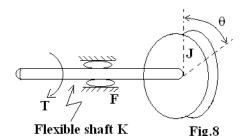
Fig.6 is:

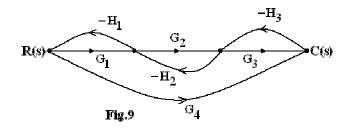
- (A) unstable
- (B) stable
- (C) marginally stable
- (D) conditionally stable


j. A mass M initially at rest acted upon by a force F(t) as in Fig.7 is described by:

(A)
$$F(t) = M \frac{dv}{dt} + K \int x dt$$

(B)
$$F(t) = M \frac{d^2 v}{dt^2} + K \int v dt$$


(C)
$$F(t) = M \frac{d^2x}{dt^2} + Kv$$


$$(D) F(t) = M \frac{d^2x}{dt^2} + Kx$$

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. Obtain the transfer function $G(s) = \frac{\theta(s)}{T(s)}$ for the inertia-spring-damper
 - system of Fig.8. Show that it represents a second-order system.

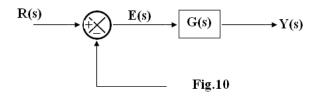
- b. Draw the block-diagram of the basic feedback control system, identifying all signals at the input and output of G(s) and H(s). Derive the system characteristic equation. (4)
- c. Consider the system with $G(s) = \frac{Y(s)}{R(s)} = \frac{1}{s^2 + 3s + 2}$ to which a standard test input signal r(t) = 5t u(t) is applied. Find the constant, ramp and exponential components of the dynamic response y(t). What will be the steady state response $y_{ss}(t)$?
- Q.3 a. State Mason's gain rule for determining the overall system gain from a signal flow graph. Obtain the overall transfer function of Fig.9 using Mason's gain rule. (4+4)
 - b. Draw appropriate block-diagrams to represent:
 - (i) combining two blocks in cascade.
 - (ii) moving a summing point that is after a block.
 - (iii) moving a take-off point that is before a block.
 - (iv) eliminating a feedback loop.

 (2×4)

- **Q.4** a. Consider the basic controller block-diagram of Fig.10. Write the expressions for G(s) and obtain the time-response y(t) for various types of controls:
 - (i) integral

(ii) PI

(iii) PD


(iv) PID

 (2×4)

 (2×4)

- b. Explain briefly the following terms used in characterising a feedback control system:
 - (i) stability

- (ii) disturbance rejection
- (iii) steady-state accuracy
- (iv) robustness

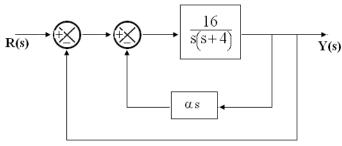
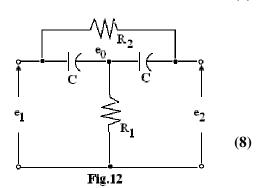



Fig.11

- Q.5 a. Using Routh stability criterion, find whether the system with characteristic equation $\Delta(s) = s^5 + s^4 + 4s^3 + 24s^2 + 3s + 63 = 0$ is stable or not. (8)
 - b. For the system of Fig.11, determine the peak overshoot when $\alpha = 0$ and input is a unit-step function. Determine the rate-feedback constant α that will decrease the peak overshoot to 1.5%. (4+4)
- Q.6 a. Consider a closed-loop system with $G(s) = \frac{k}{s}$, $H(s) = e^{-\tau_D s} \approx \frac{2-s}{2+s}$. Write the characteristic equation{sketch the root-locus on a graph sheet}. Given that the root-locus is a circle. Find the value of k corresponding to the intersection of the locus with the $j\omega$ -axis.
 - b. A bridged-T network of Fig.12 is used as a compensator. Derive its transfer function and show that the numerator is of the form $s^2 + 2\zeta\omega_0 s + \omega_0^2 \qquad \text{where} \\ \omega_0 = \frac{1}{C\sqrt{R_1R_2}} \text{ and } \zeta = \sqrt{\frac{R_1}{R_2}} \,.$

- Q.7 a. Sketch the Nyquist plot for $G(s)H(s) = \frac{1}{s(s+1)}$ and determine the stability of the system. (8)
 - b. Draw on a graph sheet the frequency response plot in Nichols coordinate system using the following data:

Frequency,
$$\omega$$
, rad/s \Rightarrow 0.2 0.5 0.78 1.25 2.2 3.0 Gain, dB \Rightarrow 15 5 0 -7 -15 -21 Phase, deg \Rightarrow -110 -120 -140 -160 -180 -190

Determine the gain-crossover frequencies, phase-crossover frequencies, phase-margin and gain-margin. (8)

- **Q.8** a. Draw the circuit of a lead compensator using opamp satisfying $D(s) = \frac{16(s+1)}{(s+6)}$. Calculate the values of the circuit elements. (6)
 - b. Explain how the use of digital control (i.e. use of digital computer as a compensator device) overcomes limitations of analog control. (6)
 - c. What is robust control system? (4)
- **Q.9** a. Draw Bode plot on a semilog graph sheet for the system $G(s) = \frac{9.7}{s(0.046s+1)} \text{ with } \omega_{ref} = 1 \, rad/s \text{. Find the phase-margin.} \tag{8}$
 - b. Discuss the effects and limitations of phase lead compensation (8)