IX. (b) Find all maximal and minimal elements of the poset from the Hasse diagram.

OR

X. (a) Define Lattice and determine whether the Hasse diagram given below represents a lattice.

(b) Let L be a lattice. Then for every a and b in L prove that $a \lor b = b$ if and only if $a \le b$.

BTS (C-L)-III-03 503 (A)

B.Tech. Degree III Semester (Lateral Entry) Examination, April 2003

IT/CS 303 DISCRETE MATHEMATICAL **STRUCTURES**

Time: 3 Hours

Maximum Marks: 100

(All questions carry **EQUAL** marks)

- Define "characteristic function" and show that if A and B are I. subsets of a universal set U.
 - $F_{A \cap R}(x) = F_A(x) \cdot F_R(x)$ for all x.
 - $F_{A\cap B}(x) = F_A(x) + F_B(x) F_A(x) F_B(x) \text{ for all } x.$
 - Prove that $2^n > n^3$ for $n \ge 10$. (iii)

OR

Using equivalence formulas prove the following is a П. (a) tautology:

$$\left\lceil (P \vee Q) \wedge \neg \left(\neg P \wedge (\neg Q \vee \neg R) \right) \right\rceil \vee (\neg P \wedge \neg Q) \vee (\neg P \wedge \neg Q)$$

- (b) How many different seven-person committees can be formed each containing 3 women from an available set of 20 women and 4 men from an available set of 30 men?
- (c) A fair coin is tossed five times. What is the probability of obtaining three heads and two tails?
- Ш. (a) Let R be a relation whose digraph is shown below:

- (i) Find M_{α}^2 .
- (ii) Find R^{-} .

III. (b) Show that if R_1 and R_2 are equivalence relations on A then $R_1 \cap R_2$ is an equivalence relation.

OR

IV. (a) Let $A = \{a, b, c\}$. Determine whether the relation R whose matrix M_R is given is an equivalence relation.

$$M_R = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

- (b) Let $F: A \to B$ and $g: B \to C$ be invertible functions. Prove that $g \circ F$ is invertible and $(g \circ F)^{-1} = F^{-1} \circ g^{-1}$.
- V. (a) Use Fleury's algorithm to produce an Euler circuit for the graph given below:

(b) Prove that if a graph G has more than two vertices of odd degree, then there can be no Euler path in G.

OR

VI. (a) Define the following and illustrate them through examples: Connected graph, complete graph and regular graph.

Contd......3.

(b) Using prim's algorithm find a minimal spanning tree for the connected graph shown below: (Begin with 'E' as the initial vertex).

- VII. (a) Determine whether the set Z* is a semigroup, where '*' is defined as ordinary multiplication.
 - (b) Let G be a group of non-zero real numbers for multiplication and $\overline{G} = \{1, -1\}$ for multiplication.

Define $\phi: G \to \overline{G}$ by $\phi(x) = 1$ if x is positive

$$\phi(x) = -1$$
 if x is negative.

Show that ' ϕ ' is a homomorphism.

OR

- VIII. (a) Show that the set N of natural numbers is a semigroup under the operation $x * y = \max(x, y)$. Is it monoid?
 - (b) Show that the set Q_i of all rational numbers other than 1, with the operation denoted by a*b=a+b-ab consists an abelian group.
- IX. (a) Determine the Hasse diagram of the partial order having the given digraph:

Contd.....4.