B. Tech Degree VIII Semester Examination, April 2009 ## CE 804 (A) ADVANCED DESIGN OF STRUCTURES (1999 Scheme) Time: 3 Hours (Use of IS 456 and SP 16 permitted) (Assume suitable data wherever necessary) | | | (************************************** | | |-------|------------|---|--------------| | I. | | Design the interior panel of a flat slab with drop $5.5 \text{ m} \times 6.0 \text{ m}$ in size to carry a superimposed load of 7 kN/m^2 . Use M20 concrete and Fe 415 steel. Sketch the reinforcement details. | (25) | | П. | | OR Design a ribbed slab for a room 8 m x 8 m. The live load is 3 kN/m ² with rib spacing of 2 m c/c. Use M20 concrete and Fe 415 steel. Sketch the details. | (25) | | III. | • | Design a RCC chimney 40 m high above ground level, 3.6 m external dia with fire brick lining, 12 cm thick with an air gap of 8 cm. The temperature above atmosphere goes up by 220° C. The coefficient of expansion in RCC may be taken as 11×10^{-6} per degree centigrade. Es = 2.1×10^{6} Kg/cm ² . The wind load upto 30 m from GL may be taken as 0.8 kN/m^2 and above it as 1 kN/m^2 Use M25 concrete and Fe 415 steel. Safe bearing capacity of soil is 200 kN/m^2 . | (25) | | | | OR | | | IV. | | Design a silo to store 380 kN of clinkers. The angle of repose of clinkers is 27° and the storage is upto the angle of repose. The unit weight of clinker is 1200 Kg/m ³ . Assume other data as required stating them in the beginning of the answer. | (25) | | V. | (a)
(b) | Derive the membrane theory equations for cylindrical shells. What are the various advantages of shell structures over conventional structures? OR | (15)
(10) | | VI. | | Design the roof with dome shape for a circular water tank having 10 m external diameter. The thickness of tank wall is 20 cm. Use M20 concrete and Fe 415 grade steel. Assume suitable data wherever necessary. Draw the reinforcement details. | (25) | | VII. | (a)
(b) | Describe in detail the Whitney's method of analysis of folded plates. Explain the advantages and limitations of folded plate roofs. OR | (15)
(10) | | VIII. | | Design a folded plate and sketch details of reinforcements with following data: | | | | | | | ## Measurements are in cm. Thickness of folded plate is 10 cm. Load including self weight. And superimposed load is 4 kN/m². Use M20 concrete and Fe 415 grade steel. (25) ***