

ENGINEERING & MANAGEMENT EXAMINATIONS, JUNE - 2008 ADVANCED COMPUTER ARCHITECTURE SEMESTER - 4

	4			
There are a O Timesens 1	1	•		[Full Marks : 70
Time: 3 Hours	1			[Full Mains . / C

GROUP - A

	(Multiple Cl	noice Type (Questions)		
Cho	ose the correct alternatives for	the following	*	10 × 1 = 10	
i)	The seek time of a disk is 30. The capacity of each track is				
•	a) 62 ms	b)	60 ms		
•	c) 47 ms	d)	none of these.		
ii)	The performance of a pipeline	ed processor	suffers if.		
	a) the pipeline stages have	e different de	elays		
•	b) consecutive instructions are dependent on each other				
	c) the pipeline stages shar	re hardware	resources		
	d) all of these.				
iii)	Consider the high speed 40 r. The regular memory has an time for CPU to access memory	access time		to the second of	
-	a) 52 ns	b)	60 ns		
	c) 70 ns	d)	80 ns.		
iv)	What is a main advantage of based systems (RS)?	classical ve	ctor systems (VS)	compared with RISC	
	a) VS have significantly hi	gher memor	y bandwidth than	RS	
•	b) VS have higher clock ra	ate than RS			
	c) VS are more parallel that	an RS			
	d) None of these.				

~	/B / 1-			100 100	-
	/B.IRCD		/XXXII-0.	/C8-403 _.	/IBK
_		-	/		<i>,</i> ~~

1	P	٠,
Ī		٦.
Į	Utech	0
2	×	4

V)	A880	ciative memory is a	**		*
	a)	pointer addressable memory			
	b)	very cheap memory			
1.	c)	content addressable memory			
	d)	slow memory.			
vi)	The	principle of locality justifies the	e use o		
	a)	Interrupts	b)	Polling	
	c)	DMA	d)	Cache memory.	
vii)	How	many address bits are require	ed for a	512 × 4 memory ?	;
	a)	512	b)	4	
	c)	9	d)	$A_0 - A_6$.	
viii)	A si	ngle bus structure is primarily i	found i	n	
,	a)	Main frames			
	b)	High performance machines			•
	c)	Mini and Micro- computers	/		
	d)	Supercomputers.			
4.4					اــــــــــا
tx)		t will be the speed up for a for uction $n = 64$?	ur-stag	e iinear pipeiine, when t	ne number of
	a)	4.5	b)	7.1	
	c)	6.5	d)	None of these.	
x)	Dyna	umic pipeline allows			
	a)	multiples function to evaluate	•		
	ay b)				
		only streamline connection	•		•
	c) d)	to perform fixed function none of these.			ļ
	u)	none of these.			, L

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. What are the different parameters used in measuring CPU performance? Briefly discuss each.
- 3. What do you mean by m-way memory interleaving? In the system with pipeline processing, is the memory interleaving useful? If yes, explain why.

 2 + 3
- 4. Develop $3^2 \times 4^2$ delta network.

5

5. Compare superscalar, super-pipeline and VLIW techniques.

5

6. Discuss about strip mining and vector stride in vector processors.

3 + 2

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3\times15=45$

- 7. a) What is Multistage Switching Network?
 - b) Describe the distribution and shared memory model of SIMD architecture.
 - c) Draw the block diagram and explain the functionality of processing element.

2 + 8 + 5

- 8. a) What is meant by pipeline stall?
 - b) Draw the block diagram of C-access memory function. Why is it necessary and how does it improve the memory access time?
 - c) Implement the data routing logic of SIMD architecture to compute $s(k) = \sum_{i=0}^{k} Ai$ for k = 0, 1, 2...N-1.
 - d) A computer has cache access time of 100 nanosecs, a main memory access time of 1000 nanosecs and a hit ratio of 0.9.
 - i) Find the average access time of the memory system
 - ii) Suppose that in the computer, there is no cache memory, then find the average access time, when the main memory access time is 1000 nanosecs. Compare the two access times. 2 + 4 + 4 + 5

- 9. a) What is Memory Management Unit (MMU)?
 - b) What are the advantages of using cache memory organization? Define hit ratio. Compare and contrast associative mapping and direct mapping.
 - c) Draw a 16-input Omega network using 2 × 2 switches as building blocks:
 - Show the switching setting for routing a message from node 1011 to node 0101 and from node 0111 to node 1001 simultaneously. Does blocking exist in this case?
 - ii) Determine how many permutations can be implemented in one-pass through this Omega network. What is the percentage of one-pass permutations among all permutations?
 - What is the maximum number of passes needed to implement any permutation through the network? 2 + 7 + 6
- 10. a) What do you mean by "Data flow Computer"?
 - b) With simple diagram, explain Data flow architecture and compare it with control flow architecture.
 - c) Draw data flow graphs to represent the following computations:
 - 1) X = A + B
 - ii) Y = X/B
 - iii) Z = A * X
 - iv) M = Z Y
 - $v) \qquad N = Z * X$
 - vi) P = M/N.
 - d) What is vector processor? Give the block diagram to indicate he architecture of a typical Vector Processor with multiple function pipes. 2 + 6 + 3 + 4
- 11. Write short notes on any three of the following:

 3×5

- a) Omega Network
- b) Cross bar Switches
- c) Reservation table
- d) Multiport Network
- e) CM-2 machine.

END