Code: AE-12

Subject: INSTRUMENTATION AND MEASUREMENT

JUNE 2007

Time: 3 Hours Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or best alternative in the following:

(2x10)

a. The transfer characteristic of a measuring instrument is given below in the tabular form

Input units	0.0	0.1	0.2	0.3	0.4	0.5
Output units	0.2	0.4	0.6	0.8	1.0	1.2

The transfer characteristic can be described as

- (A) Non linear with Zero Error
- (B) Non linear without Zero Error
- (C) Linear without Zero Error
- (D) Linear with Zero Error
- b. The condition for the balance in the bridge shown is given by

$${}_{({\rm A})}\,{\rm R}_1{\rm R}_4 = {\rm R}_2\,{\rm R}_3 \qquad ; \quad \frac{{\rm R}_2}{{\rm R}_1} = \frac{{\rm C}_3}{{\rm C}_4}$$

(B)
$$R_1R_2 = R_3R_4$$
 ; $R_1C_3 = R_2C_4$

(C)
$$R_1R_4 = R_2R_3$$
 ; $R_1C_3 = R_2C_4$

$$\frac{R_1}{R_2} = \frac{C_4}{C_3}$$
 ; $\frac{R_1}{R_4} = \frac{R_2}{R_3}$

12/29/11 Code: A-20

(A) Frequency Synthesizer

(C) Wave modulator

from a fraction of a hertz to several hundred kHz, is called

a.	Delay line in a CRO is nece	ssary to				
	(A) View the signal fully					
	(B) Cause a Lissajous pattern(C) Cause desired phase difference between two input signals					
	(D) Ililiai norzonai sweep	at any amplitude level of the signal				
e.	Frequency can be measured	d by using				
	(A) Maxwell's bridge	(B) Schering's bridge				
	(C) Hay's bridge	(D) Wien's bridge				
f.	f. Maxwell's bridge is used for measurement of inductance of					
	(A) low Q coils	(B) medium Q coils				
	(C) high Q coils	(D) very high Q coils				
σ	The quality factor of a coil i	is defined as				
g.	ω_0 R	$\omega_0 L$				
		(B) $\frac{\sqrt[\infty]{D}}{\mathbb{R}}$				
	· /	` '				
	$\omega_0 L$	$\frac{\omega_0 L}{\omega_0 L}$				
	(C) 2 R	(D) 2R				
	where R is the resistance an	nd L is the inductance of coil and $^{\odot}$ 0 is resonant frequency.				
h.	. Which of the following dev	rices can measure pressure directly				
	(A) tachometer					
	(B) strain gauge					
	(C) Rotameter					
	(D) Baurden tube					
i.	A resistance strain gauge o change in its resistance due	f 120Ω , having a gauge factor of 2 is subjected to strain of 1.5×10^{-6} . The to the strain is				
	(A) $360 \mu\Omega$	(B) $360 \text{ m}\Omega$				
	(C) 0.36Ω	(D) 3.6 $\mu\Omega$				
	j. In a 5 bit R-2R ladder	D/A converter, the digital input is 00100. If the reference voltage used				
	V_R =10V, the output voltage					
	(A) 1.25 V	(B) 2.5 V				
	(C) 5.0 V	(D) 10.0 V				

c. An instrument which can produce sine, triangular, square and sawtooth wave forms at frequencies

(D) Sweep frequency generator

(B) Function generator

12/29/11 Code: A-20

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

Q.2 a. Explain the following terms as applied to characterization of dynamic behaviour of instrume					ents				
		(i) Dynamic error	(ii) Fidelity	y (ii	i) Bandwidth		(4+3+3)		
b. (i) List the fundamental physical quantities that serve to define all other physical						l quantities			
		(ii) Write a note on 'rando	m errors'.				(2+4)		
Q.3		With the help of block diag	grams, expla	ain the working	principles of	the followin	g		
		(a) Harmonic Distorsion A	Analyzer						
		(b) Cavity type Wavemete	er				(16)		
Q.4 a		Discuss 'gating error' in a frequency by period measu		ounter and exp	plain why son	netimes it is	preferable	to meas	sure
	t	o. Show a block schematic (8)	of a wideb	and sweep gen	nerator and d	escribe its o	operation.		
Q.5 a		Why attenuators are necessary working of a compensated	-		on system of (8)	'a CRO? D	escribe the	e circuit	and
1		Describe briefly, the const with a CRO to measure cu		the principle o	f working of a (8)	a current pro	obe which	can be u	ised
Q.6 a		Show a circuit scheme empits working.	oloying bism	uth metal to m	easure magne	tic field and	explain the	principl	e of
ł).]	Describe a thermal method	to measure	RF power.			(8)		
Q.7 a		Explain, using a block sclimportant parameters them.		e basics of ope characterize (9)	eration of a S a receiv	-	dyne receiv define	ver. List each	the of
		Delineate a procedure to response.	measure ima	age response i	n a receiver. (7)	Suggest a m	nethod to re	educe im	nage

12/29/11 Code: A-20

Q.8 a. Distinguish between a 'wave analyzer' and analyser and explain its working.	'spectrum analyzer'. (8)	Write a block diagram of a spectrum
b. Describe at least two schemes to multiplex	A/D converters.	(8)

- Q.9 a. Show, by drawing neat sketches, at least three arrangements for measurement of thickness of metallic magnetic sheets using inductive transducers.(8)
 - b. Explain the basic principle of working of the following transducers
 - (i) Piezoelectric force transducer
 - (ii) Magnetostrictive force transducer.

(8)