Total number of printers and

B. Tech BSCP 2201

2nd YEAR SUPPLEMENTARY EXAMINATION -2006

PHYSICS - II

Full Marks - 70

Time: 3 Hours

The figures in the right hand margin indicate full marks for the questions.

Answer questions No. 1 which is compulsory and any five from the rest.

- Answer all the following questions: 2×10
 - (a) What happens to the output voltage of the voltage multiplier circuit used in Cockcroft-Walton accelerator if the capacitors used have low capacitance?
 - (b) Draw the graph showing the variation of output energy with number of drift tubes in a linear accelerator.

- (c) Distinguish between primitive unit cell and unit cell.
- (d) Show the (1 1 0) plane of a orthogonal unit cell in a diagram.
- (e) The ground state energy of hydrogen atom is 13.6eV. Calculate the width of the first forbidden energy gap in hydrogen atom.
- (f) Why in p-type material the number of electrons in conduction band is less than that of holes in valence band?
- (g) For the flow of electron there must be a potential difference. Name a phenomenon where electron can flow even though there is no potential difference. Who discovered it first?
- (h) How superconductivity concepts helped US forces in 2003 to destroy Iraqi communication system.

- (i) Why light beam traveling in optical fibers can carry much more information than radio or microwaves?
- (j) What is the difference between light emitted from LED and light emitted from LD.
- (a) Prove that the average energy obtainable from betatron is limited by its radius and peak magnetic flux of the applied field, 4
 - (b) One of oldest linear accelerators at Berkeley has 46 tubes. If length of the shortest tube is 1.2 meters what will be the length of the longest tube?
 - (c) Describe how optical fibers are in use to enhance the living conditions on earth. 3
- 3 (a) What are the factors that determine the performance index of a nuclear accelerator?

- (b) Show that in simple cubic lattice, interplanar spacings of {101}, {110} and {011} planes are in the ratio 1:1:1.
- (c) Why type-I superconductors are called soft superconductors?
- 4. (a) What are the interference do you obtain from Kronig-Penney model?

 4
 - (b) Calculate the structure factor in case of body centered unit cell.

 4
 - (c) Under what condition a charge can not be accelerated by using magnetic field? 2
- 5. (a) Explain on the basis of BCS theory how superconductivity is affected by temperatures.
 - (b) A crystal plane makes intercepts 2.93 mm, 4.47 mm and 2.35 mm along three crys-

tallographic	axes	having	lengths	3.05 A.
6.99 Å and 4	.90 Å	respective	ely. Deter	mine the
Miller indica	es of	the plane	c.	4

- (c) Distinguish between step index multiple mode optical fiber and graded index multiple mode optical fiber. 2
- (a) Explain the origin of semiconducting properties in compound semiconductors.
 - (b) Derive an expression for the energy of an electron inside an infinitely deep potential well from Kronig-Penney model.
 - (c) How superconductors can be used in internet and pollution control?

 3
- (a) Describe different types of pumping mechanisms to achieve population inversion.
 - (b) The critical temperature for some superconducting specimen with isotopic mass

196.5 is 4.18K.	Calculate	its	critical	tem-
perature when i	ts isotopic	mas	s chang	es to.
203.4.				4

- (c) Mention four numbers of medical applications of radio isotopes. 2
- 8. (a) Distinguish between compound semiconductors and elemental semiconductors.

 What are the advantages of compound semiconductors over elemental semiconductors?
 - (b) What are the characteristics of an optical source used in FOCL.

 4
 - (c) Define reciprocal lattice. 2