Total No. of Questions: 12]

[Total No. of Printed Pages: 4

[3861]-160

F. E. (Semester - II) Examination - 2010

BASIC MECHANICAL ENGINEERING

(2008 Pattern)

Time: 3 Hours

[Max. Marks: 100

Instructions:

- (1) Solve Q. No. 1 or 2, Q. No. 3 or 7, Q. No. 5 or 6, Q. No. 7 or 8, Q. No. 9 or 10, Q. No. 11 or 12.
- (2) Answers to the two sections should be written in separate answer-books.
- (3) Use of logarithmic tables, slide rule, Mollier charts, electronic pocket calculator and stream tables is allowed.
- (4) Assume suitable data necessary.

SECTION - I

- Q.1) (A) Define: System, Isothermal Process, Specific Properties,
 Specific Heat, Internal Energy. [1x5=05]
 - (B) Explain: COP and Efficiency with its relation. [3+3=06]
 - (C) In a certain the modynamic process of an ideal gas, the volume changes from 0.2m^3 to 0.5m^3 , while pressure changes as per $P = 130\left[\left(\frac{V}{100}\right) + 1\right]$, where P is in N/m² and V is in m³.

Find work done by gas in kJ.

[05]

OR

Q.2) (A) Derive equation for work done in Constant Volume and Constant Pressure Process. [05]

1

(B) Classify the following into Intensive and Extensive Properties:
Pressure, Enthalpy, Energy, Volume, Weight. [1x5=05]

[3861]-160

P.T.O.

	(C)	Heat Pump is used to maintain house at 23°C. The house losing heat to outside air through walls at 60,000 kJ/hr. The energy generated in house by various appliances is kJ/hr. For a COP of 1.5, find required power input in supplied to the heat pump.	While 4,000
Q.3)	(A)	Draw labelled sketch of any one Boiler.	[05]
	(B)	Explain principle of working of a Reciprocating Compression with block diagram.	ressor [3+3=06]
	(C)	Draw labelled sketch of Vapour Compression Refrigera System. Define COP.	ation [5+1=06]
		OR •	
Q.4)	(A)	Draw labelled sketch of Two Stroke SI Engine.	[05]
	(B)	How boilers are classified	[06]
	(C)	State uses of Compressed Air.	[06]
Q.5)	(A)	Explain use of Solar Energy for any one application.	[05]
	(B)	State advantages and disadvantages of Thermal Power Plant.	[3+3=06]
	(C)	A wire 1.5mm in diameter and 150mm long is submerg fluid. An elecutic current is passed through wire and is incruntil the fluid reaches 100°C. Under the condition if convenient transfer coefficient is 4500 W/m²°C, find how electrical power must be supplied to wire to maintain surface at 120°C?	eased ective much
	4	OR	
Q.6)	(A)	Draw labelled sketch of Nuclear Power Plant.	[3+2=05]
	(B)	State advantages and disadvantages of Hydro-power Plant.	[3+3=06]

(C) Calculate rate of heat transfer per m² through wall of 200 mm thick inner layer of 'A', a central layer of 'B' 100mm thick and a outer layer of 'C' 100mm thick. Temperature of gas in the furnance is 1670°C with h_{in} = 74 W/m²°C and outside surface temperature of 'C' is 70°C.

Given:

 $K_A = 1.25 \text{ W/m}^{\circ}\text{C}$

 $K_B = 0.074 \text{ W/m}^{\circ}\text{C}$

 $K_C = 0.55 \text{ W/m}^{\circ}\text{C}$

Assume steady state, 1-D flow of lear

[06]

SECTION - IN

- Q.7) (A) What is Brake? How it differs from Clutch? Explain Internal Expanding Brake with figure. [2+2+4=08]
 - (B) Explain four bar mechanism. What do you mean by inversions of mechanism? Explain. [4+4=08]

\mathbf{J}_{OR}

Q.8) Explain with neat sketch:

[4x4=16]

- (a) Bevel Gears
- (b) Ball Bearing
- (c) Open Belt Drive
- (d) Transmission Shaft
- Q.9) (A) Explain Stress-Strain Diagram for Ductile Material. Show its salient features. [4+4=08]
 - (B) Describe any four properties of Engineering Materials. [4x2=08]

OR

Q.10) (A)	Draw neat sketches of the following Sheet Metal Working Processes: [4x2=08]		
	(a) Embossing		
	(b) Punching		
	(c) Bending		
	(d) Perforating	•	
(B)	Describe any four Non-metallic Materials.	[4x2=08]	
Q.11) (A)	Draw block diagram of Lathe Machine and explain of its various parts.	functions [4+5=09]	
(B)	Draw block diagram of Vertical Milling Machine and functions of its basic elements. OR	d explain [4+5=09]	
Q.12) (A)	Draw labelled sketch of Radial Drilling Machine. Stapplications.	tate its [5+1=06]	
(B)	Draw neat sketch of Power Saw, name its parts and its working.	d explain [3+3=06]	
(C)	State advantages limitations and applications of CNC Tool.	Machine [2+2+2=06]	
	7		