3/18/12 Code: A-20

Diplete - ET/CS (NEW SCHEME) - Code: DE52 / DC52

Subject: FUNDAMENTALS OF ELECTRICAL & ELECTRONICS ENGINEERING

Time: 3 Hours

JUNE 2009

Max. Marks: 100

NOTE: There are 9 Questions in all.

- Question 1 is compulsory and carries 20 marks. Answer to Q. 1. must be written in the space provided for it in the answer book supplied and nowhere else.
- Out of the remaining EIGHT Questions answer any FIVE Questions. Each question carries 16 marks.
- Any required data not explicitly given, may be suitably assumed and stated.

Q.1 Choose the correct or the best alternative in the following:

 (2×10)

- a. A 3-phase induction motor always runs at a speed:
- (A) lower than synchronous speed
 - **(B)** higher than synchronous speed
 - (C) equal to synchronous speed
 - (D) which is constant
- b. Efficiency of a transformer is of the order of:
 - **(A)** 20%

(B) 45%

(C) 70%

- **(D)** 95%
- c. Thevenin's theorem is applicable in:
 - (A) DC circuits only

- (B) AC circuits only
- (C) both DC and AC circuits
- **(D)** none of the above
- d. A capacitor stores energy in the form of:
 - (A) magnetic field

- (B) electrostatic field
- **(C)** electromagnetic field
- **(D)** mechanical energy
- e. The speed of a DC shunt motor cannot be varied by:
 - (A) changing only the armature resistance
 - **(B)** changing only the field resistance
 - (C) changing both the armature and the field resistances
 - **(D)** none of the above
- f. If 1500 ohm resistor is not available, how can several 1000 ohm resistors be connected to get the same value
 - (A) three in parallel

(B) three in series

(C) two in parallel

- (D) two in parallel one is series
- g. Two sinusoidal currents are given by the equations difference between them is:
- $i_1 = 10 \sin \left(\omega t + \frac{\pi}{3} \right)$ and $i_2 = 15 \sin \left(\omega t \frac{\pi}{4} \right)$. The phase

(A) 105 degrees

(B) 85 degrees

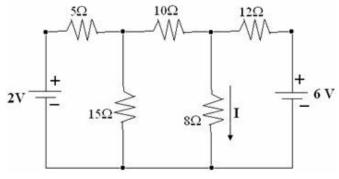
(C) 60 degrees

(D) 30 degrees

3/18/12 Code: A-20

- h. In a p-type semiconductor, the majority carriers are:
 - (A) holes

- (B) electrons
- **(C)** both holes and electrons
- (D) neither electrons nor holes
- i. A zener diode is mostly used in:
 - (A) amplifiers


(B) oscillators

(C) rectifiers

- (D) voltage regulators
- j. A smoother output is available from:
 - (A) a half-wave rectifier without filter
 - **(B)** a full-wave rectifier without filter
 - (C) a half-wave rectifier with LC filter
 - (D) a full-wave rectifier with LC filter

Answer any FIVE Questions out of EIGHT Questions. Each question carries 16 marks.

- Q.2 a. State Coulomb's law of Electrostatics. Also, derive the equation for the force on current carrying conductor in magnetic field.
 (2+6)
 - b. What is meant by statically induced Emf? Explain self induced Emf and mutually induced Emf. (2+6)
- Q.3 a. Solve the network given below for the current I by using Thevenin's theorem. (8)

- b. Derive the relationship between line and phase quantities in a three-phase star connected network.

 (8)
- Q.4 a. With the help of a neat labelled diagram, explain construction of a DC Machine. (8)
 - b. Draw the connection diagram of shunt and series DC motors and explain. (8)
- Q.5 a. Draw a neat diagram of a shell type transformer. Derive the expression for the emf of a single-phase transformer. (8)
 - b. Explain how a rotating magnetic field is produced in a three-phase induction motor. (8)
- Q.6 a. Differentiate between n-type and p-type semiconductors. (8)
 - b. Draw the characteristic curve of a p-n junction diode and explain. (8)
- Q.7 a. Compare the performance and characteristics of CB, CC and CE amplifiers. (4+4+4)

3/18/12 Code: A-20

	b.	Discuss why CC amplifiers are preferred for particular specific applications .	(4)
Q.8	a.	Discuss the effects of negative and positive feedback on amplifiers.	(10)
	b.	Explain decibels and half-power points.	(3+3)
Q.9	a.	Draw and explain the circuit of a Zener Diode voltage regulator.	(8)
	b.	Draw the circuit of a full wave rectifier and explain its working.	(8)