C.S.E.

CIVIL ENGINEERING - 2005

(PRELIMINARY)

Maximum Marks: 300 Time Allowed: Two Hours Match List-I (Soil) with List-II (Discription) and select the correct answer using the code given below the Lists: List-I List-II A. Lacustrine 1. A glacial clay characterized by distinctly marked annual deposite of sediments 2. Part of glacial drift which is B. Peat directly deposited by ice 3. An organic soil formed of C. Till vegetational matter D. Varved Clay 4. A soil which is deposited in lakes ABCD BCD (a) 4 3 2 1 (b) 2 1 4 3 3 (d) 2 3 4 1 (c) 4 1 2 What is caused by the addition of coarser particles like sand or silt to clay? (a) Decrease in liquid limit and increase in plasticity index (b) Decrease in liquid limit and no change in plasticity index (c) Decrease in both liquid limit and plasticity index (d) Increase in both liquid limit and plasticity index Match List-I (Different types of Soil) with List-II (Group Symbol of IS Classification) and select the correct answer using the code given below the Lists: List-I List-II A. Well-graded gravel sand mixture 1. ML with little or no fines B. Poorly-graded sands or gravelly 2. CH sand little or no fines Inorganic silts and very fine 3. GW sands or clayey silts with low plasticity

	D.	Inor	ganic	cla	ys of	high	pla	sticity	4.	SP	
		A	В	C	D			A	В	C	D
	(a)	2	1	4	3		(b)	3	4	1	2
	(c)	2	4	1	3		(d)	3	1	4	2
4.	ger (a)	l part erall Hon	icles y rec eycor	with ogn nb s	a 'fa ized : tructu	ice-to- as? are	fac (b)	e' or p	e-gra	lel o	gement or rientation structur
							-	Dispe			
5.	is coe	ight cat th	of wa e sum ent of ill be	ter i	s 10 e of	kN/m soil 4, eff	3. If and ecti	the g	roui al e eral	nd-warth	and un ater tab pressures at 10
		80 k						180 k			1.0
	the the ma (a)	discl	narge at is s? 10-3 o	the cm/s	coe	re ler fficie	ngth nt (b)	of da	mea	bility	
7.	tha per and	tifica t of meab l bott	tion. top oility om la	The and of n	thick bot niddl (k). V	kness tom e laye What low?	of t lay er (is th	the mi er. Tl 2k) is ne ave	ddle he o twi rage	laye coeff ce th	rallel to r is twice icient of at of to fficient of
	(a)						and the same	1.33 1			
771	(a) (c)	1.5 k				(d)	0.66 1			
8.	(a) (c)	1.5 k nsiden Hydr is inc	the aulic lepen	grad dent	lient i	g stat requir	d) eme ed to	0.66 lents:	ite 'q		conditio

prevented by increasing the length of flow path of water. Seepage pressure is independent of the coeficient of 3. permeability. Which of the statements given above are correct? (a) 1, 2 and 3 (b) 1 and 2 (c) 1 and 3 (d) 2 and 3 Match List-I (Nomenclature) with List-II (Associated With) and select the correct answer using the code given below the Lists: List-I List-II Isobar A. 1. Pore pressure B. Isochrone 2. Seepage C. Conjugate plane 3. External loading D. Concentric parabola 4. Shear strength A A B C D B D 4 3 (a) 3 2 1 (b) (c) (d) If the time required for 50% consolidation of a remoulded 10. sample of clay with single drainage is 4 hours, then what is the time required to consolidate the same sample of clay with same degree of consolidation but with double drainage? (a) I hour (b) 2 hours (c) 6 hours (d) 8 hours 11. Consider the following processes involved in consoli--dation: Void reduction 2. Pore pressure development Seepage of water 4. Creep What is the correct sequence of the processes given above? (a) 4-1-3-2(b) 2 - 3 - 1 - 4(c) 4 - 3 - 1 - 2(d) 2-1-3-4

9.

12.

14.

Points A, B and C correspond to three compaction states of a silty soil on the compaction curve given above.

Which one of the following is correct in respect of

permeability of the soil for the states A, B and C?

(a) A > B, B < C (b) A < B, B > C (c) A = C > B (d) A < B = C

13. Which one of the following expresses the degree of disturbance of undisturbed clay sample due to remoulding?
(a) Thixotropy
(b) Dilatancy

(c) Sensitivity (d) Plasticity
When a dense sandy soil is sheared, what does it

- exhibit?
 (a) Thixotropy (b) Dilatancy
 (c) Swelling (d) Bulking
- During the first stage of triaxial test when the cell pressure is increased from 0.10 N/mm² to 0.26 N/mm², the pore water pressure increases from 0.07 N/mm² to 0.15 N/mm². What is the value of the Skempton's pore pressure parameter B?
 (a) 0.5
 (b) -0.5
 (c) -2.0
 (d) -2.0
- 16. During a site reconnaissance survey, it was observed that 10 m height of soil is standing without any lateral support. What is the cohesive strength of soil with Ø=0 and Y=20 kN/m³?

(a) 100 kPa (b) 50 kPa (c) 25 kPa (d) 200 kPa 17. Which of the following is not related to design of pile foundations? (a) Pull-out test (b) Cyclic loading (c) Plate-load test (d) Integrity test Loading of a saturated fine-grained soil results in the 18. following processes: 1. Shear failure Immediate settlement 3. Pore pressure generation 4. Volumetric deformation What is the correct sequence of the processes given above? (a) 1-4-3-2(b) 2 - 3 - 4 - 1(c) 1 - 3 - 4 - 2(d) 2-4-3-1 19. Dolphin is a type of which one of the following? (a) Pile foundation (b) Isolated footing (c) Raft foundation (d) Caisson 20. What is the super-elevation for a horizontal highway curve of radius 500 m and speed 100 kmph in mixed traffic condition? (a) 8.9% (b) 6.2% (c) 0 (d) 7% 21. What is the innermost portion of approach zone which is the most critical portion from obstruction viewpoint, called? (a) Outer horizontal surface (b) Conical surface (c) Inner horizontal surface (d) Clear zone 22. According to ICAO recommendations, what is the rate of elevation correction for the runway length above MSL? (a) 1% for every 100 m of elevation above MSL (b) 7% for every 300 m of elevation above MSL (c) 2% for every 500 m of elevation above MSL (d) 2% for every 300 m of elevation above MSL What does the Wind Rose Diagram (WRD) for orientation of airport runway give? (a) Direction of wind (b) Direction and duration of wind

	(d)	None	of t	he al	ation and						0.0020
24.	pur	at is pose RT-1	?		mmende b) RT-2						uting RT-5
25.	Ma	tch Li i selec	ist–I ct the	(Typ	e of Pave rect answ	ement) wit	h Li e co	ist-II	en b	mber) elow:
			List		ave la la		17		4.0%		
72		Cem							3.0%		
					macadan	1					
		Thin		mino	ous				2.5%		
	D.	Eart	h ·		-24			20	2.0%	D	
		A	В	C	D			В		D	
	(a)			4	2	(b)		2		1	
	(c)	3	2	4	of cambe	(d)		1	3	2	
27.	(a) (c)	nfall 1 in 1 in	30 60	e foll	pavemen	(b) (d)	1 in 1 in	48 72			
21.	1.	An a grac A fa	ascen dient dling in 5	of 1 grad	gradient in 120 to dient of 1 form a si	of 1 in of form in 75 ummi	n 100 n a va mee t cur	me alley ets a ve.	fallin	e. g gi	adient
	3. W	basi	s of	head	of summi dlight sig tements g	ht dis	tance	3.			
) 1 ar				(b)	2 an	nd 3			
	(c)	1 ai	nd 3			(d)	2 or	nly			
28.	Man	atch I	List-l ect the ist-I	e cori	ighway S rect answ	er usi) wit ng th	h Li e co List t ali	ae gr	nt o	below.

	C.	Preli	mina	rv sı	irvey		3. Cross-drainage locations					
		Deta					4.		gatory			
		A			D			A	В	C	D	
	(a)	1	2	4	3		(b)	4	3	1	2	
	(c)	1	3	4	2		(d)	4	2	1	3	
29.	Ma	Corre	ct ar	(Mat	e <i>rial)</i> r usii	ng tl	ie co	de gi		elow	the I	lists:
	A.	Asph	nalt			1.	of a	ir	illed i			
	B.	Cuth					med	lium	dissol			
	C.	Bitu	men	emu	lsion	3.	Bitu	men	with '	volat	ile dil	uent
	D.	Tar				4.	Bitu	men porti	along on of	wit mine	h son erals	ne
		Α	В	C	D			A	В	C	D	
	(a)	2	3	4	1		(b)		1			
	(c)	320		4			(d)	4	3	2	1	
30.	(a) (b) (c) (d)	Vert thro Vert pave Low Stre	to ri ical ugh ical emer er la sses a of s	gid I stres the I com it sur yers on ri sub-g	ses a point pres face have gid p	men are to s of sive director to to	ts? rransi conta stre ectly i ake le	mitted act in es is under esser are t	ransm	he le ular timu whee itude itted	ower struc m or el load es of s	layer ture the the strees wider
31.	tot (a) (b) (c)	aximu tal nu	pass be a	ervicer of s a g	e vo vehi iven nmoo iven	lum cles poir date poir	that in a d on ant in	a ros	cified it leng	defi:	ned a	s the f time
32.								taten	nents	is co	orrect	?
						- In	· cc	commo	hoterio	0.00		

Cant deficiency is the difference between

(b) the equilibrium cant necessary for the maximum permissible speed and actual cant provided
(c) cant required at maximum speed and minimum speed
(d) two parallel rails after 10 years
33. Consider the following locations of a turnout:

the at the time of renewal

(a) actual cant provided at the time of construction and

- Tongue rail
 Lead rail
 Toe of switch
 Crossing
 Which is the correct sequence for a train to pass over the turnout from the facing direction?
 (a) 3-1-2-4
 (b) 4-2-1-3
- (a) 3-1-2-4 (b) 4-2-1-3 (c) 3-2-1-4 (d) 4-1-2-334. Wearing locations of rails and their reasons are listed below:

 1. Wear at end of rails: Loose fish bolts
 - Wear at end of rails : Loose fish bolts
 Wear at sides of : Constant brake application
 Wear on the top of : Rigidity of wheel base rail head on tangent
- track
 4. Wear on top of rail : Lesser area of contact head on curves between wheel and rail Which of the pairs given above are correctly matched?

 (a) 1 and 4 (b) 1 and 2 (c) 2 and 3 (d) 1, 2, 3 and 4

 35.

A ladder AB of weight W and length I is held in equilibrium by a horizontal force P as shown in the figure given above. Assuming the ladder to be idealized as a homogeneous rigid bar and the surfaces to be smooth, which one of the following is correct?

(a)
$$P = \frac{1}{2} W \tan \theta$$
 (b) $P = \frac{1}{2} W \csc \theta$

(c)
$$P = \frac{1}{2} W \cos \theta$$
 (d) $P = 2W \cos \theta$

xx, x,x, and x,x, are parallel axes of which xx is the centroidal axis. If moment of inertia of the figure about x1x1 axis is 10 m4, what is the moment of inertia of the figure about x, x, axis?

- (a) 10 m⁴
- (b) 11 m⁴ (c) 14 m⁴
- (d) 15 m4

How many revolutions a shaft has to rotate to achieve 37. a rated speed of 30 hertz in 4 seconds?

(a) 15

36.

- (b) 30
- (c) 60
- (d) 120

A projectile is fired horizontally with a velocity of 38. 6 m/s from a point of height h m above and 12 m away from an object. What is the value of h required so that projectile hits the object?

(a) 4.9 m

(b) 9.8 m

(c) 6 m

(d) 19.6 m

Two bodies of masses m_1 and m_2 are connected by a light inextensible string passing over a small smooth fixed pulley; $m_1 > m_2$. What is the acceleration of the system?

- (a) $g(m_1 + m_2)/(m_1 m_2)$ (b) $g(2m_1 + m_2)/(m_1 2m_2)$
- (c) $g(m_1 + 2m_2)/(2m_1 m_2)$ (d) $g(m_1 m_2)/(m_1 + m_2)$
- 40. A ball of mass 1 kg moving with a velocity 2 m/s collides directly with a stationary ball of mass 2 kg. If the first ball comes to rest after the impact, what is the velocity of the second ball after impact.?
 - (a) i.0 m/s

(b) Zero

(c) 2 m/s

- (d) 0.5 m/s
- 41. A mass *m* is suspended from a massless spring of spring constant *k*. The spring is cut in half and the same mass is suspended form one of the halves. If the frequency of oscillations in the first case is *f*, then what is the frequency in the second case?
 - (a) $\sqrt{2} f$

(b) f

(c) f/2

- (d) $f/\sqrt{2}$
- 42. Consider the following statements regarding tensile test diagrams for carbon steels with varying carbon contents: As the carbon content increases
 - 1. the ultimate strength of steel decreases.
 - 2. the elongation before fracture increases.
 - 3. the ductility of the metal decreases.
 - the ultimate strength of steel increases.

Which of the statements given above are correct?

(a) 3 and 4

(b) 1 and 3

The cross-section of a beam in bending is as shown in the figure given above. It is subjected to a shear force acting in the plane of cross-section. Which among the following figures shows the correct shear stress distribution across the depth of the cross-section of the beam?

- 46. A beam of uniform strength refers which one of the following?
 - (a) A beam in which extreme fibre stresses are same at all cross-section along the length of the beam

- (b) A beam in which the moment of inertia about the axis of bending is constant at all cross-sections of the beam
- (c) A beam in which the distribution of bending stress across the depth of cross-section is uniform at all cross-sections of the beam
- (d) A beam in which the bending stress is uniform at the maximum bending moment cross-section
- 47. A simply supported beam AB of span L is subjected to a concentrated load W at the centre C of the span. According to Mohr's moment area method, which of the following gives the deflection under the load?

 (a) Moment of the area of M/EI diagram between A and C taken about C

(b) Moment of the area of M/EI diagram between A and B taken about B

(c) Moment of the area of M/EI diagram between A and C taken about A

(d) Moment of the area of M/EI diagram between A and C taken about A

48.

For the beam shown in the figure given above, which among the following is the conjugate beam?

(c) Which one of the following is the correct statemer regarding the force and deflection at point B in trusse

I and II shown in the figures given above? (a) I will have less member force and less deflection at compared to II (b) I will have less member force and more deflection :

B compared to II (c) I will have more member force and more deflection : B compared to II

(d) I will have more member force and less deflection : B compared to II 50 kN

50.

51.

In a truss work as shown in the figure given abov what is the force induced in the member DE?

(a) 50 kN (tensile) (b) Zero

(c) 50 kN (compressive) (d) 25 kN (compressive)
$$\begin{array}{c} W \\ W \\ A \\ V_{B} \end{array}$$

A three-hinged circular arch ACB is formed by two quadrants of circles AC and BC of radii 2R and R respectively with C as crown, as shown in the figure given above.

Consider the following in respect of the reactive forces developed at supports A and B due to concentrated load at the crown:

 Line of action of reaction R_A at A is inclined at 45° to the horizontal.

2.
$$V_A = V_B = W/2$$
 3. $H_B = 2H_A$

$$3. \quad H_{B} = 2H_{A}$$

4.
$$H_A = H_B = W/2$$

Which of the above is/are correct?

(a) 1 and 3

(b) 2 and 3

(c) 1, 2 and 4

(d) 4 only

52. A symmetrical three-hinged parabolic arch of span L and rise h is hinged at springings and crown. It is subjected to a u.d.l. w throughout the span. What is the bending moment at a section L/4 from the left support?

(a) $wL^{2}/8$

(b) wL2/16

(c) wL2/8h

(d) Zero

53.

Final moment values got through the analysis of a portal frame have been shown in the figure given above. What is the value of X?

- (a) 96 kN

- (b) 60 kN (c) 30 kN (d) 24 kN

A horizontal fixed beam AB of length L has uniform

flexural rigidity El. During loading the right support A rotates through an angle θ clockwise. What is the distance of the point of contraflexure from the left support?

(a) L/3

(b) 3L/10 (c) L/2

(d) 2L/3

55.

Four identical beams AE, BE, CE and DE have been rigidly jointed at E. The point C slips and rotates along with member firmly fixed at E. Which one of the following is correct?

- (a) There is no moment on the members
- (b) Except at C, there is no moment on the members of frame
- (c) Except at C and E for member EC, no moment will be on other members
- (d) All the members are subjected to moment

56.

What are the distribution factors at joint B for the members BA and BC respectively, in the figure given above?

(a) 0.57 and 0.43

(b) 0.43 and 0.57

(d) 0.36 and 0.64 (c) 0.50 and 0.50

Members AB and BC in the figure shown above are identical. Due to a moment 2M applied at B, what is the value of axial force in the member AB?

(a) M/I (compression) (b) M/I (tension)

(c) 1.5M /I (compression) (d) 1.5M /I (tension)

What is the horizontal displacement of joint 10, due to load P?

(b)
$$P/\{(1+\sqrt{2})K\}$$

(c)
$$P/\{\sqrt{2}(1+\sqrt{2})K\}$$
 (d) $P/\{1.5K\}$

59.

58.

57.

Which one of the following is the influence line for

For the simply supported beam AB shown above, which one of the following is correct for maximum shear at the centre of the span for a live load longer than the span?

- (a) The entire span should be loaded
- (b) The half span AC be loaded
- (c) The middle half span DE be loaded
- (d) The quarter span AD should be loaded

61.

Which one of the following is the influence line for the

force in the member U,L, of the plane pin-jointed frame shown in the figure given above?

- A car is moving at 40 m/s along a curve of 1 km radius. 62. If the total acceleration is not to exceed 2 m/s2, what is the maximum rate at which its speed can be decreased? (b) 1.6 m/s² (a) 2 m/s²
 - (c) 1.2 m/s² (d) 1.0 m/s²
- A horizontal fixed AB is fixed at both its ends A and B. 63. During loading, the right support sinks by an amount δ. Flexural rigidity of the beam is uniform and is equal to El. Length of the beam is L. What is the moment developed at the centre of the beam due to sinking of the support?
 - (a) 6ΕΙδ / L²
- (b) Zero
- (c) $3EI\delta/L^2$ (d) $12EI\delta/L^2$
- Consider the following statements: 64.
 - Hansen's equation accounts for influence of depth, shape and inclination of load.
 - Local shear failure takes place in dense and/or very dense sand and also in stiff and hard clays.
 - The region of failure of soil below foundations consists of three different zones.

Which of the statements given above are correct?

- (a) 1, 2 and 3
- (b) 1 and 2
- (d) 1 and 3 (c) 2 and 3

65.	Which one of the following theories of failure is suitable for cast iron?
	(a) Shear strain energy theory
	(b) Maximum strain energy theory
	(c) Maximum principal stress theory
	(d) Maximum shear stress theory
66.	
00.	Castigliano's theorem falls under the category of
	(a) displacement method (b) equilibrium method
	(c) force method (d) stiffness method
67.	A STATE OF THE PROPERTY OF THE
	concentrated load. Where does the maximum deflection
	of the beam due to the applied load occur?
	(a) Directly under the load
	(b) At the centre of the beam
	(c) Between the load point and nearest end support
	(d) Between the load point and centre of the beam
68.	
	The portal method of structural analysis is generally suitable for
	(a) tall buildings (b) low-rise buildings
	(c) low-rise buildings with uniform framing
	(d) low-rise buildings with non-uniform framing
69.	
	estimates of an activity are 5, 10 and 21 days respectively.
	What are the expected time and standard deviation respectively?
	(a) 12, 3 (b) 11, 4
	(c) 11, 2.67 (d) 10, 16
70.	In PERT, the total time duration along the critical path
	for the project completion time is probabilistic. It is
	usually presumed to follow which one of the following?
	(a) Beta distribution (b) Poisson distribution
	(c) Normal distribution (d) Log-normal distribution
71.	B statement i kotat trout 13
	1. the time span by which the starting (or finishing) of

	an activity can be delayed without delaying the completion of the project.
	difference between maximum time available and the actual time required to perform the activity.
	 difference between its earliest finish time and the earliest start time of its successor activity.
	Which among the following is/are correct?
	(a) 2 and 3 (b) 1, 2 and 3
	(c) 1 only (d) 1 and 2
72.	Which one of the following is the correct instance of amenability to ladder network development? (a) Certain activities are done periodically (b) Self-similar constructions cannot be or need not be, simultaneous at several locations in a project (c) The project can be broken down into units or sequences of activities which can be further devolved into nearly similar repeated components or sub-
	activities (d) Repetitive use of non-consumed resources is called for and can accordingly be made
73.	Consider the following statements: A critical activity in a CPM network has 1. the longest duration of all activities. 2. zero total float. 3. zero free float. 4. the shortest duration of all activities.
	Which of the statements given above are correct? (a) 1 and 2 (b) 1 and 3 (c) 2 and 3 (d) 3 and 4
74.	A uniform simply supported beam is subjected to a clockwise moment M at the left end. What is the moment required at the right end so that rotation of the right end is zero?
	(a) $2M$ (b) M (c) $M/2$ (d) $M/3$
75.	Consider the following statements with reference to

oxidation ponds:

1. They require high initial investments.

2. They have low operational cost.

						nts giv					ect ?	
		1 an					b) 2				D D D D D	
		1 an					(d)			3		
76.	(C	code	icati giv	ion) en b	and	select v the I	the	cor	rect	ans		
			List-							st-II	100 74	33
	A.	Tricl									ttach	ed
	B.					process					ched	
		Disp			ench	-					pende	
	D.	Sept			D		4.		B		uspen	ded
	(a)		В		D 3		(b)		3			
	(c)		3		4		2777		4			
77	-					F7						(ion)
77.						nent U						
		List-		-				List-		- B.		
	A.	Aera			1	Suspe				1		
	B.	Softe				Colou						
		Coag					dal d		200		ters,	
	D.	Filtr	ation	1	4.	Hardi						
		A	В	C	D			A	В	C	D	
	(a)	3	4	1	2		(b)	2	1	4	3	
	(c)	3	1	4	2		(d)	2	4	1	3	
78.	Wh	ich o	ne o	f the	foll	lowing	stat	eme	nts is	s no	corre	ect ?
	(a)					rage sy						laid
	3000					sewage						-
	(b)				yster	n, the	desig	gn o	f sev	vage	syste	m is
	(0)	econ					-1		1	o olti.		mak
	(C)	In Se	para	ite s	yste	m, self	-crea	ming	vel	OCILIE	s are	1101

available and occasional flushing is required (d) As the sewage is diluted by storm water in combined

sewage system, cost of treatment is low

100	d	igeste	Г.	aluda	o ic	the liv	ing	bior	nass.			
	2. S	econo	ary	Sing	ote r	lecreas	ed v	with	incre	ease	in wat	er
			+ of	childe	0							
	1 5	conten	COL	nsists	of	higher	sol	ids	conte	ent t	han t	he
		ainter	ma ni	onten	t -							
	1176:	h of t	hos	tatem	ents	given	abo	ve i	s/are	COTT	ect?	
	WILL	and	A A	later		(b)	2	and	3			
	(a)	and	*			(d)	3	and	4			
	(c)	2 only				diamo	tor	ie 1:	aid a	t a	slope	to
80.	A se	ewer,	1000	mm	in	diame	on r	unni	ing fi	ull. A	ssum	ing
	obta	in a v	eloc	ity of	0.8 1	nt, wh	en i	e th	e ve	locit	v in t	his
	Mar	ining's	s n	as co	nsta	nt, wii	11 2	5 611	11 11		H	
	sew	er ii i	LIS	runni	ing i	half fu	0	4 m/	S			
		0.2 m						8 m				
	(c)	0.6 m	S	-		(4)	tot.	TT /	Suite	hla	For)	and
81.	Mat	ch Li	st-I	(Laye	out)	with I	List-	ho 6	odo	give	n belo	ow:
	sele			rect a	ansv	ver usi	ng t	ist-I	T	Brec		
		List-I								cunn	ly but	not
	A.	Tree:	syste	em	1.	Satisf	acto	ry w	Ind	ia	iy, Dat	1101
						much	use	ed in	coct	or of	city	
	B.	Grid			2.	Well-	pian	neu	secu	01 01	city	
		syste	m		77				h ro	otano	mlar i	road
	C.	Ring	syst	tem	3.	For to	own	s wi	nie	Clan	Suitar i	ouc
					101	layou	II	1001	do	volor	and to	wns
	D.	Radia	al sy	stem	4.	For in	rreg	ulari	y ue	C	D	******
		A	В	C	D			A	D	2	3	
	(a)	2 -	3	4	1		(b)	4	1	2	1	
	(c)	2	1	4	3		(d)	4	3	-		
82.			f the	e follo	owin	g state	eme	nts i	s 110	t cor	rect :	200
OM	(a)	Chlo	ride	s in p	otab	le wate	er m	ay b	e pr	esen	from	300
		120000000000000000000000000000000000000	4 - E	: nn	2.222							
	(b)		4	to be	anfa	against	pat	hoge	enic t	acte	ria res	idual
	(0)	chlo	rine	shou	ld re	emain	betw	veen	0.05	ppr	n and	0.20
		-										
	(c)	-		of in	on a	nd mar	ngan	ese	in ex	cess	of 0.3	ppm

Primary sludge is to be treated with an anaerobic

79. Consider the following statements:

		in c	lrink	ing '	water	is o	bjecti	onal	ole						
					pure										
83.	wa	nich o ter q	one o	of the	e follo	owin	g rela	ated	to do	omes	tic po	table			
	(a)	Tur	bidit	y (or	sill	CA :	scale)	is 1	5-20	ppm	or r	ng/lit			
						ALT scale) is 15-25 ppm or mg/l									
	(c)		dnes			ed a	s Ca(Co ₃ e	quiv	alent)	is 7	5-115			
	(d)	BOI) is	20 p	pm or	mg	/lit								
34.	Se	ttling	e giv	cess	nit of and pelow	sele	ect th	e co	rrec	List–I t ans	I (Ty	pe of using			
	A.	Grit		mber		1.	Zon			ressi	on se	ttling			
	B.		lge b			2.				ttling		· · · · · · · · · · · · · · · · · · ·			
	C.	Clar	ifloc	culat	tor	3.	Disc	crete	settl	ing					
	D.		onda (AS		ttling						ncipa	lly)			
		A	В	C	D			A	В	C	D				
	(a)	1	4	2	3		(b)	3	2	4	1				
	(c)	1	2	4	3		(d)	3	4	2	1				
5.	Ch	aract	erist	ic) a	nd selve the	lect	the c	with	Lis ct an	st–II swer	(Filte usin	e <i>ring</i> g the			
		List-	·I					L	ist-I	I					
	A.	Slow	san	id fil	ter	1.	unde	er pr	essu: evice	re an	d no				
	B.	Rapi	d sa	nd fi	lter	2.	Rem	oves	98-9	99% 1	bacte	ria			
	C.	Pres	sure	filter	invo	3.	Rate (m²		iltrat	ion i	s 450	0 lit/			
		A	В	C				A	В	C					
	(a)	2	1	3			(b)	3	1	2					
	(c)	2	3	1			(d)	3	2	1					

PVC pipes provide smoother internal surface than the RCC pipes. C value of PVC pipes is lower than that of CI pipes. When large diameter (>1500 mm) pipes are required, the choice of material is limited to Prestressed Concrete pipes and Steel pipes. Which of the statements given above are correct? (b) 1 and 2 (a) 1 and 3 (d) 1, 2 and 3 (c) 2 and 3 Consider the following statements: 87. Most colloidal particles in water are negatively charged. The surface charge on colloidal particles is the major contributor to their long-term stability. Which of the statements given above is/are correct? (b) 2 only (a) 1 only (d) Neither 1 nor 2 (c) Both 1 and 2 Consider the following statements in respect of a steady 88. two-dimensional rotational flow: Continuity equation is satisfied and streamlines can be drawn. Both stream function and velocity potential function exist. Which of the statements given above is/are correct? (b) 2 only (a) 1 only (d) Neither 1 nor 2 (c) Both 1 and 2 89. Consider the following statements in respect of the critical depth of flow in a prismatical rectangular channel: For known specific energy, the discharge is minimum. For known discharge, the specific energy is minimum. Which of the statements given above is/are correct? (b) 2 only (a) 1 only (d) Neither 1 nor 2 (c) Both 1 and 2 The sequent depth ratio in a hydraulic jump formed in 90. a horizontal rectangular channel is 16.48. The flow is

86. Consider the following statements:

	su of	percr flow	itica ?	l. W	hat i	s the va	lue o	f the	Frou	de ni	umber
	(a)	4.0			(b)	8.0	(c)	12.0		(d)	120.0
91.	W	hat is	the i	ratio	of th	ne lift co	effici	ent to	drag	coef	ficient
	of	an a	erofo	il se	ctio	n at stall	?				
		1.5			(b)		0.000	15		332	30
92.	pro at t =	opaga the d	ation owns	of p	ress m en	long, c ure wave d is insta hammer	e is l	000 n	/s. It	f the sed a	valve t time
	(a)	0-4	S			(b)	2-	4 s			
	(c)	4-8	S			(d)	8-	12 s			
93.	usi A.	ng th Stre	Lis amli	de g	iven comi	t-II and below t	he L	ists:	ist-I		nswer
	B.		amli				2	Sou	rce		
	-		easin	-	acin	g					
	C.		amlii vergii		dial	lee.	3.	Acc	elera	ting i	flow
	D.	Stre	amlii rging	nes			4.	Dec	elera	ting	flow
			В		1000		A	В	C	D	
	(a)	3	2	1	4	(b			3		
	(c)	3	4	1	2	(d) 1	2		4	
94.	As	per L porti	acey' onal	s reg	ime	equation	, wh	at is th	e flo	w ve	locity
	(a)	$(Qf^2$	(1)3			(b)	(Qt	(2)1/6			
	(c)	Q/	f^2			(d)	(Q	$(f^2)^{1/6}$	3		
	whe	ere Q	is th	e dis	scha	rge and	f is th	ne Lac	ey's	silt fa	actor.
95.	Rey	nold: fficie	s nui	nber	= (ettling d	own t is t	in a v he val	iscou ue o	is flu f its	id at drag
	(a)	320		(b) 1:	20	(c)	80		(d)	5

96.	Wh	ich o	ne o	f the	foll	owi	ng stat	eme	nts i	s con	rrect	?				
	As	the d	epth	of i	mme	ersic	n of a	ver	tical	plan	ie su	rface				
							centre									
	(a)	come	es cl	oser	to th	ie ce	entre o	f gra	vity	of th	e are	ea				
	(b)	mov	es ap	art f	rom	the	centre	of g	ravit	y of	the a	area				
	(c)	ultin		y coi	ncid	es w	ith the	cen	tre o	gra	vity	of the				
	(d)	rema	ains t	unaff	ecte	d										
97.	No	n-coll	loida	l liq	uids	are										
	(a)	New	tonia	in fli	uids		(b)]									
	(c)	ideal	l flui	ds			(d) (dilata	ant f	luids						
98.	Ma	tch L	ist-I	with	Lis	t-II	and se	lect	the o	corre	ect an	nswer				
	usi	ng th	e co	de g	iven	bel	ow the	Lis	ts:							
		List-						List-		NE CONTRACT	Seres Services	water weight				
	A.	Activ	vated	sluc	lge	1.	Is do									
	B.	Prim	ary	treat	men		Very active and can treat									
		A. F. S.		njew			fresl									
	C.	Slud	ge ir	idex			Estir	rn sl	udge							
	D.	Retu	ırn sl	udge	2	4.	Activ									
		T repli					from				0.000					
		A	В		D		4.				D					
	(a)		3	1	4		(b)		3	3	2					
0.0	(c)	2		3	-		(d)	4		1 10	ANT Y	ton in				
99.	Wa	tch L ter S le giv	uppl	y) ar	id se	elect	nce) w the co	orrec	t an	swer	unct	ng the				
		List						List-	II							
	A.	Drop	о Ма	nho	le	1.	Carryi			ge flo	ow b	elow				
	B.	Inve	rted	Siph	on	2.	Conne	cting to lo	high wer l	evel i	evel b	oranch sewer				
	C.	Man	hole			3.	Transp	porti	ng se	ewag	e fro	m				
	D.	Air l	Eject	or		4.	Conne	cting	g bra	nch	sewe					
							ACTOR DATE	1-1-1								

		Α		C	D			Α	В	C	D)
	(a)	3	4	1	2	(h)	2	1	4	3	
	(c)	3	1	4	2	(0	1)	2	4	1	3	
100.	of axi is t	specif s at si	ic g uch a essu	ravity a spe	y 1.6 a	nd is	rot the	liqu	l abo	out it	s v	liquid ertical . What
	(b)	$\frac{1}{4}$ th	of th	ne va	lue, w	hen th	e c	ylin	der v	vas f	full	
	(c)	$\frac{1}{2}$ th	of th	ne va	lue, w	hen th	e c	ylin	der v	vas f	ull	
	(d)	The	same	e as l	pefore	the cy	lin	der	was	rotat	ed	
	1. 2. 3. Sele(a)	CPM Activ crew Activ crew	netvities size ities size e con and	on the		must litical pro- critical re- critical re-	pe path	mair hs n ath	nust must ode g	use	mi	normal nimum elow :
02.				f the	follov					cor	rec	t?
					uperpo							
	(a)	non- displa	line acen	ar b nent t	ehavi heory	our c	of	mat	eria	l an		small
		displa	acem	ent t	heory							large
	(c)				beha heory		of	ma	ateria	al ar	nd	small
	(d)				beha heory	viour	of	ma	ateria	al a	nd	large
03.	Con	sider	the	follov	wing s	teps in	CO	ndu	cting	con	sol	idated

- 1. Opening of the drainage valve
- Application of the back pressure
- 3. Application of the cell pressure
- 4. Shearing

Which one of the following is the correct sequence of the steps given above ?

(a) 1-3-2-4

(b) 2-4-1-3

(c) 1-4-2-3

- (d) 2-3-1-4
- 104. In which situation can ladder network be employed more conveniently?
 - (a) More than one activity can be started concurrently
 - (b) There is linear sequential flow of activities
 - (c) The project involves overlapping activities
 - (d) There are more than one dangling event
- 105. What is the discharge corresponding to a critical depth of 1.20 m in a 3.0 m wide rectangular channel?
 - (a) 4.12 m³/s

(b) 4.94 m³/s

(c) 8.24 m³/s

- (d) 12.35 m³/s
- 106. Why are gate valves provided in distribution system?
 - (a) To minimize the flow pressure in the network
 - (b) To maximize the usage of the distribution system
 - (c) To control the flow in the pipe network
 - (d) To identify the loss through illegal connections
- 107. What are the gases produced by landfills primarily comprised of?
 - (a) Carbon monoxide and hydrogen sulphide
 - (b) Methane and carbon dioxide
 - (c) Sulphur dioxide and nitrogen dioxide
 - (d) Ethane and oxygen

108.

What is the stiffness constant associated with the system shown above when a concentrated load is placed at B?

(a) $48EI/L^3 + k$ (b) $24EI/L^3 + k$

(c) $12EI/L^3 + k$

(d) $3EI/L^3 + k$

109.

For the three-hinged parabolic arch shown above, which one among the following represents bending moment?

110. A cantilever has rectangular cross-section and supports concentrated load at its free end initially. If depth and width of the beam section are doubled, the deflection at free end of the cantilever will reduce to what percentage of the initial deflection?

(a) 20%

- (b) 15.72% (c) 9.57% (d) 6.25%
- 111. What is the maximum possible value of Poisson's ratio for a non-dilatant material?

(a) 0.67

- (b) 0.50
- (c) 0.33
- (d) 0.25

Directions: The following nine (9) items consist of two statements : one labelled as the 'Assertion (A)' and the other as 'Reason (R)'. You are to examine these two statements carefully and select the answers to these items using the code given below:

- (a) Both A and R are individually true and R is the correct explanation of A
- (b) Both A and R are individually true but R is *not* the correct explanation of A
- (c) A is true but R is false (d) A is false but R is true
- 112. Assertion (A): The surface overflow rate (SOR) of the sedimentation basin is numerically equal to the flow divided by its plan area.
 - Reason (R) : SOR physically represents the settling velocity of the slowest settling particles that are 100% removed in an ideal settling basin.
- 113. Assertion (A): Location of the elevated service reservoir (ESR) at the centre of the distribution area is helpful in equitable distribution of water to the consumers even when the distribution area is large.
- Reason (R): For equitable distribution of water to the city, sufficient number of ESRs shall be provided to limit the area to be served by each of the ESRs.

 114. Assertion (A): PERT is a deterministic model.
- Reason (R): PERT makes the assumption that the optimistic ad pessimistic times are about equally likely to occur.
- 115. Assertion (A): In a three-hinged arch subjected to uniformly distributed load over the span, with rise in temperature horizontal thrust at supports will increase.
- Reason (R): Rise in temperature increases length of the arch.
- 116. Assertion (A): While the other elements of the flexibility matrix may be positive or negative, the elements lying on the

	Reason (R)	:	leading diagonal are always positive. The displacement at any coordinate due to a unit force at that coordinate is always in the direction of the unit force.
17.	Assertion (A)	1000	In a two-hinged arch, shape of the bending moment diagram will correspond to shape of the arch due to temperature rise.
	Reason (R)	:	Hinges at supports will exert only horizontal thrust on the supports.
18.	Assertion (A)		Cant deficiency occurs when train travels around a curve at speed higher than the equilibrium speed.
	Reason (R)		Cant deficiency is the difference

theoretical cant.

pressure theory.

pore pressures.

between the actual cant and the

Taylor's stability charts are used for

Taylor's stability charts are vary only

Rankine's earth pressure theory is a

simplified form of Coulomb's earth

Coulomb's theory considers effects of

sudden drawdown condition

for total stress analysis.

Reason (R)

119. Assertion (A)

120. Assertion (A)

Reason (R)

Reason (R)