

1. Cerium is a member of :
(A) s-block element
(B) f-block element
(C) d-block element
(D) p-block element
2. The element with electronic configuration $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2}$ is a/an :
(A) Metal
(B) Non Metal
(C) Metalloid
(D) Inert gas
3. Which of the following has Noble gas configuration?
(A) La^{2+}
(B) Ce^{3+}
(C) Ce^{4+}
(D) Eu^{2+}
4. Nobelium with atomic number 102 has the electronic configuration:
(A) $[\mathrm{Rn}] 5 \mathrm{f}^{7} 6 \mathrm{~d}^{7} 7 \mathrm{~s}^{2}$
(B) $[R n] 5 f^{10} 6 d^{4} 7 \mathrm{~s}^{2}$
(C) $[\mathrm{Rn}] 5 \mathrm{f}^{14} 6 \mathrm{~d}^{1} 7 \mathrm{~s}^{1}$
(D) $[\mathrm{Ra}] 5 \mathrm{f}^{14} 6 \mathrm{~d}^{0} 7 \mathrm{~s}^{2}$
5. Elements of the same group are characterised by :
(A) Ionization potential
(B) Electron affinity
(C) Same number of electrons in the outer most shell
(D) Electronegativity
6. Zr and Hf have similar atomic and ionic radii because of :
(A) Diagonal relationship
(B) Lanthanide contraction
(C) Both in the same period
(D) Similar chemical properties
7. Which of the given elements has the highest second ionization potential?
(A) O
(B) N
(C) B
(D) C
8. The attraction of an atom for electrons in a bonded molecule is called :
(A) Ionization potential
(B) Oxidation potential
(C) Electron affinity
(D) Electronegativity
9. Deuteriumatom is an \qquad of hydrogen atom.
(A) Isotope
(B) Isobar
(C) Isotone
(D) Isomer
10. Complete the reaction scheme
${ }_{4}^{9} \mathrm{Be}+{ }_{2}^{4} \mathrm{He} \rightarrow{ }_{6}^{12} \mathrm{C}+\ldots$. choosing one of the following:
(A) ${ }_{1}^{1} \mathrm{P}$
(B) ${ }_{0}^{1} \mathrm{n}$
(C) ${ }_{1}^{2} \mathrm{H}$
(D) ${ }_{-1}^{0} \mathrm{e}$
11. An isobar of ${ }_{20} \mathrm{Ca}^{40}$ is:
(A) ${ }_{18} \mathrm{Ar}^{38}$
(B) ${ }_{19} \mathrm{~K}^{42}$
(C) ${ }_{20} \mathrm{Ca}^{38}$
(D) ${ }_{18} \mathrm{Ar}^{40}$
12. Which of the following complexes is most stable?
(A) $\left[\mathrm{M}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$
(B) $\left[\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(C) $\left[\mathrm{M}(\text { bipyridine })_{3}\right]^{2+}$
(D) $\left.[\mathrm{M} \text { (pyridine) })_{6}\right]^{2+}$
13. Which of the following is non polar covalent molecule ?
(A) All
(B) CO_{2}
(C) CCl_{4}
(D) SiF_{4}
14. The strong forces operating in diamond structure are:
(A) Hydrophobic
(B) Covalenf
(C) Ionic
(D) Coordinate Covalent
15. The central atom in $\mathrm{H}_{2} \mathrm{O}$ molecule undergoes the hybridization :
(A) sp
(C) dp^{2}
(B) sp^{2}
(D) sp^{3}
16. In regular trigonal bipyramidal structure the bond angles are:
(A) 180° and 60°
(B) 60° and 60°
(C) 72° and 90°
(D) 120° and 90°
17. The hybridization of Tellurium in TeCl_{4} molecule is:
(A) sp^{3}
(B) $\mathrm{sp}^{3} \mathrm{~d}$
(C) dsp^{2}
(D) $\mathrm{d}^{2} \mathrm{sp}^{3}$
18. The longest C - H bond distance is in the following molecule:
(A) $\mathrm{C}_{2} \mathrm{H}_{2}$
(B) $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{Br}_{2}$
(C) $\mathrm{C}_{2} \mathrm{H}_{6}$
(D) $\mathrm{C}_{2} \mathrm{H}_{4}$
19. Oxidation $\$$ tate of 2^{+}of oxygen is observed in :
(A) $\mathrm{F}_{2} \mathrm{O}$
(B) $\mathrm{H}_{2} \mathrm{O}$
(C) $\mathrm{H}_{2} \mathrm{O}_{2}$
(D) $\mathrm{O}_{2} \mathrm{~F}_{2}$
20. In the reduction of $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ by Fe^{2+}, the number of electrons involved per atom of chromium is:
(A) 3
(B) 5
(C) 1
(D) 4
21. The oxidation state of Iron in $\mathrm{Fe}(\mathrm{CO})_{5}$ molecule is :
(A) 5^{+}
(B) 2^{+}
(C) 0
(D) 3^{+}
22. During oxidation process electrons are :
(A) lost
(B) gained
(C) paired up
(D) remains same
23. $\mathrm{B}_{2} \mathrm{H}_{6}+2 \mathrm{NH}_{3} \xrightarrow{\text { High temperature }}$ gives the product as :
(A) Boron nitrate
(B) Borazole
(C) Boric acid
(D) Borax
24. Which is the correct order of decreasing acid strength halogen group from Cl toI?
(A) $\mathrm{HClO}_{3}>\mathrm{HBrO}_{3}>\mathrm{HIO}_{3}$
(B) $\mathrm{HIO}_{3} \simeq \mathrm{HClO}_{3} \simeq \mathrm{HBrO}_{3}$
(C) $\mathrm{HBrO}_{3}>\mathrm{HClO}_{3}>\mathrm{HIO}_{3}$
(D) $\mathrm{HIO}_{3}>\mathrm{HClO}_{3}>\mathrm{HBrO}_{3}$
25. Which of the following is soluble in excess of NaOH ?
(A) $\mathrm{Ni}(\mathrm{OH})_{2}$
(B) $\mathrm{Fe}(\mathrm{OH})$
(C) $\mathrm{Cr}(\mathrm{OH})_{3}$
(D) $\mathrm{Al}(\mathrm{OH})$
26. What is the 10 Dq value of $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$ complex?
(A) 120
(B) 12
(C) 24
(D) 4
27. Which of the 0.1 M aqueous solution will have the lowest freezing point?
(A) $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}_{5}$
(B) KI
(C) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(D) $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
28. Silver metal dissolves in â solution of sodium cyanide in the presence of air to form the complex :
(A) $\mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$
(B) AgCN
(C) $\mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{3}\right]$
(D) AgCl
29. The process of heating the concentrated ore in a limited supply of air or in the absence of air is knownas:
(A) Roasting
(B) Leaching
(C) Calcination
(D) Cupellation
30. If the principal quantum number $\mathrm{n}=3$, the magnetic quantum number m can take on values :
(A) 3
(B) 9
(C) 7
(D) 5
31. Which of the following is pella magnetic in low spin state?
(A) Co^{2+}
(B) Fe^{2+}
(C) Ni^{2+}
(D) Co^{3+}
32. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{NO}_{2}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}(\mathrm{Cl})\left(\mathrm{NO}_{2}\right)\right] \mathrm{Cl}$ are isomers of :
(A) Coordination
(B) Optical
(C) Geometrical
(D) Ionization
33. $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ is called by its IUPAC name as :
(A) Potassium trioxalatoaluminate (iii)
(B) Potassium trioxalatoaluminium (iii)
(C) Potassium trioxalatealumininate (iv)
(D) Potassium Aluminum Oxalate
34. What is the structure of IF_{7} ?
(A) Trigonal bipyramidal
(B) Square pyramidal
(C) Pentagonal bipyramidal
(D) Trigonal planar
35. The EAN of $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}{ }^{2+}\right.$ is :
(A) 34
(B) 38
(C) 36
(D) 40
36. How many number of chlorides will be precipitated when a solution of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}^{2}\right] \mathrm{Cl}_{2}$ will react with an excess of silver nitrate ?
(A) 3
(C) 0
(B) 1
(D) 2
37. Which of the following red substances turns black on heating and restores its colour on cooling ?
(A) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(B) $\mathrm{Pb}_{3} \mathrm{O}_{4}$
(C) $\mathrm{Na}_{2} \mathrm{CrO}_{4}$
(D) NaClO_{4}
38. Which of the halogenswill form most hexahalide with sulphur?
(A) Cl
(B) I
(C) F
(D) Br
39. $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$ exhibits the isomerism called:
(A) Cis-trans
(B) Linkage
(C) Ionization
(D) Coordination position
40. When a reagent $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is added to an aqueous solution FeCl_{3} it gives :
(A) Blood red colouration
(B) Apple green colouration
(C) Blue colour precipitate
(D) Red precipitate

EIJ-49853-A
41. Paul-Knorr synthesis of Pyrroles involves the reaction of NH_{3} with :
(A) 1,2-Dicarbonyl Compounds
(B) 1,3-Dicarbonyl Compounds
(C) 1,4-Dicarbonyl Compounds
(D) 1,5-Dicarbonyl Compounds
42. Which one of the following is the major product in the nitration of Naphthalene?
(A) 2-NO naphthalene
(B) 3- NO_{2} naphthalene
(C) 6-NO naphthalene
(D) 1-NO naphthalene
43.

What is the name of this compound ?
(A) Serine
(B) Alanine
(C) Cysteine
(D) Glycine
44. Which one of the following Vitamins is essential for coagulation of Blood ?
(A) K
(B) C
(C) A
(D) B 1
45. Identify the heterocyclic ring containing amino acid from the following :
(A) Valine
(B) Histidine
(C) Leucine
(D) Phenylạlanine
46.

z in the above reaction is :
(A)

(B)

47.

(D)

This conformation of cy clohexane is called as :
(A) Twist boat
(B) Deformed chair
(C) Chair
(D) Boat
48. Identify Thiosemicarbazide from the following :
(A) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{SH}$
(B) $\underset{\|}{\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}-\mathrm{NH}-\mathrm{NH}_{2}}$
(D) $\underset{\|}{\mathrm{H}_{2} \mathrm{~N}-\mathrm{C}-\mathrm{NH}-\mathrm{NH}_{2}}$
49. Ethylmethylamine exhibits which one of the following?
(A) Enantiomerism
(B) Diastereomerism
(C) Dynamic enantiomerism
(D) Geometric isomerism
50. Methyl- $\alpha-$ D-glucoside and Methyl- β-D-glucoside represent :
(A) Epimers
(B) Homomers
(C) Atropisomers
(D) Anomers
51. What is the source of UV radiation ?
(A) Hydrogen gas discharge lamp
(B) RF oseillator
(C) Klystron oscillator
(D) NernstFilament
52. Which transitions are studied by UV spectrometer?
(A) Rotational
(B) Electronic
(C) Nuclear
(D) Vibrational
53. One nm is equal to :
(A) $10^{-5} \mathrm{~cm}$
(B) $10^{-6} \mathrm{~cm}$
(C) $10^{-7} \mathrm{~cm}$
(D) $10^{-8} \mathrm{~cm}$
54. The structure of sulphur dioxide molecule $\left(\mathrm{SO}_{2}\right)$ may be given as :
(A) Tetrahedral
(B) Bent
(C) Linear
(D) Plane triangle
55. Identify the preferred solvent for recording ' $\mathrm{H}-\mathrm{NMR}$ spectrum from the following :
(A) CDCl_{3}

(B) $\mathrm{C}_{6} \mathrm{H}_{6}$

(D) CHCl_{3}
56. In $\mathrm{H}-\mathrm{NMR}$ the aldehydic proton resonates at $\delta(\mathrm{ppm})$ value of:
(A) 1.80
(B) 2.50
(C) 9.80
(D) 7.20
57. Which conformation of n-butane has the lowest potential energy ?
(A) Eclipsed
(B) Partially eclipsed
(C) Gauche
(D) Anti

EIJ-49853-A
58. An SN 1 reaction results in :
(A) Retention
(B) Racemisation
(C) Inversion
(D) Elimination
59. Among the following which alcohol is most reactive with a hydrogen halide ?
(A) Ethyl
(B) t-Butyl
(C) Benzyl
(D) Isopropyl
60. $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \xrightarrow{\mathrm{H}_{2}} \mathrm{Lindlar} \mathrm{catalyst} \mathrm{z}$

Structure of z is:
(A) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(B) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(C) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(D) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
61. Oxidation of 3-pentanol yields :
(A) Diethyl ketone
(B) Acetone
(C) Methyl ethyl ketone
(D) Acetone + Acetic acid
62. What is the order of a base catalyzed bimolecular elimination reaction of an alkyl halide ?
(A) First order
(B) Pseudo first order
(C) Second order
(D) Zero order
63. Identify the product in the addition reaction of HBr to propene in the presence of peroxide :
(A) 2-Bromopropane
(B) 1-Bromopropane
(C) 1,2-Dibromopropane
(D) 1,1-Dibromopropane
64. 3-Hexene $\frac{1 \mathrm{O}_{3}}{2 \mathrm{H}_{2} \mathrm{O} / \mathrm{Zn}}$ product(s)

What are the products in the above reaction ?
(A) Acetaldehyde + Butanal
(B) Formaldehyde + Pentanal
(C) Acetone + Butanal
(D) Propanal + Propanal
65.

The configuration of this compound is :
(A) $1 \mathrm{R}, 2 \mathrm{~S}$
(B) $1 \mathrm{~S}, 2 \mathrm{R}$
(C) $1 R / 2 R$
(D) $1 \mathrm{~S}, 2 \mathrm{~S}$
66. $3 \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CCl}_{4} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{Y}$

Structure of Y is :
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CCl}_{3}$
(B) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHCl}_{2}$
(C) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{CH}$
(D) $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \mathrm{C}-\mathrm{Cl}$
67.

Identify z from the following :
(A)

(B)

(C)

(D)

68. Which one of the following does not give an Iodoform test?
(A) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{OH}$

(D) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{OH}$
(C)

69. Identify succinic acid from the following:
(A)

(B) $\quad\left(\mathrm{CH}_{2}\right)_{3} \backslash \mathrm{CO}_{2} \mathrm{H}$

H

(C)

(D)

18
70. $\mathrm{H}_{5} \mathrm{C}_{2}-\mathrm{O}-\mathrm{C}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}$. This structure represents which one of the following?
(A) Carbonyl compound
(B) Alkoxide
(C) Ester
(D) Diether
71. $\mathrm{Ph}-\stackrel{\mathrm{C}}{\mathrm{C}}$

Structure of z is :
(A) $\mathrm{Ph}-\mathrm{CO}_{2} \mathrm{H}$
(B) $\mathrm{Ph}-\mathrm{CH}_{2} \mathrm{OH}$
(C) $\underset{\sim}{\mathrm{C}}-\mathrm{Ch}=\mathrm{CH}-\underset{\|}{\mathrm{C}}-\mathrm{Ph}$
(D) $\mathrm{Ph}-\mathrm{CH}=\mathrm{CH}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{Ph}$
72. The specis formed during the Hofman rearrangement is :
(A) $\mathrm{R}-\mathrm{C}-\mathrm{N}_{2}^{+}$
(B) RNCO
(C) $\mathrm{R}-\underset{\mathrm{O}}{\mathrm{C}}-\mathrm{N}_{3}$
(D) RCNO
73. Which alkyl halide is most reactive in aliphatic SN 2 reaction ?
(A) $\mathrm{R}-\mathrm{I}$
(B) $\mathrm{R}-\mathrm{Br}$
(C) $\mathrm{R}-\mathrm{Cl}$
(D) $\mathrm{R} \subset \mathrm{F}$
74. $\mathrm{Y}+\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CHO} \rightarrow$
 What is Y in the above reaction?
(B) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(D)

(A) $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$
75. An alkaline solution of cupric ion complexed with tartarate ion is known as :
(A) Tollen's reagent
(B) Benedict's reagent
(C) Fehling's reagent
(D) Bayer's reagent
76. $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CH}_{2}-\underset{\text { CH }}{\mathrm{CH}}-\mathrm{CH}_{2}-\mathrm{CO}_{2} \mathrm{H} \longleftrightarrow$ product :
(A)

(C)

(B)

(D)

77. Identify the $\mathrm{n} \rightarrow \pi^{*}$ band (nm) of a ${ }_{C}$ = Oin the UV spectrum from the following :
(A) ~ 300
(B) ~ 200
(C) ~ 250
(D) ~ 150
78. Appearence of two bands in the region of $3500-3300^{\mathrm{cm}^{-1}}$ in IR spectrum is due to which one of the following groups?
(A) $-\mathrm{NH}_{2}$
(B) $-\underset{\mathrm{H}}{\mathrm{N}}-$
(C) -SH
(D) -Cl
79. Identify the Fundamental NMR equation from the following:
(A) $\gamma \mathrm{B}_{1} \mathrm{t}_{\mathrm{p}}$
(B) ع.1.c
(C) $\frac{\mathrm{H}_{0} \mathrm{~V}}{2 \pi}$
(D) $-\Delta \mathrm{E} / \mathrm{kT}$
80. Magnetic anisotropy is shown by which one of the following?
(A) CH_{4}
(B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
(C) $\mathrm{H}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Cl}$
(D)

81. Average kinetic energy per molecule is :
(A)
(C) $\frac{1}{2} \mathrm{kT}$
(B) $\frac{3}{2} \mathrm{RT}$
(D) $\frac{1}{2} \mathrm{RT}$
82. Rootmean square speed of gas molecule is:
(A) $\sqrt{2 \mathrm{RT} / \mathrm{M}}$
(B) $\sqrt{\frac{3 R T}{\mathrm{M}}}$
(C) $\sqrt{\frac{3 R T}{N}}$
(D) $\sqrt{\frac{8 R T}{M}}$
83. For one mole of gas C_{P} and C_{V} relations are :
(A) $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}$
(B) $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}}-\mathrm{R}$
(C) $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{v}}+\mathrm{R}$
(D) $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{V}} \cdot \mathrm{R}$
84. The compressibility factor for ideal gas is :
(A) Zero
(B) 1
(C) >1
(D) <1
85. The units of van der Waal's constant 'a' are :
(A) Moles/lit
(B) $\mathrm{Atm} \mathrm{litre}^{2} \mathrm{~mol}^{-2}$
(C) lit/mol
(D) atmospheres
86. The value of $\mathrm{P}_{\mathrm{C}} \mathrm{V}_{\mathrm{C}} / \mathrm{RT}_{\mathrm{C}}$ is :
(A) 8.314
(B) 0.375
(C) 2.000
(D) 0.082
87. Half-life period $\left(\mathrm{t}^{1} / 2\right)$ is not effected by changing concentration of reactants in the reaction of :
(A) First order
(B) Second order
(C) Zero order
(D) 0.5 order
88. Which of the following is not true for zero order reactions?
(A) Rate = Rate constant
(B) Rate is independent of concentrations
(C) Rate does not change with time
(D) Rate increase with increase in concentrations
89. The half-life of first order reaction is 0.1 sec . The rate constant is:
(A) 6.93 sec
(B) 0.0693 sec
(C) 69.3 sec
(D) $6.93 \mathrm{sec}^{-1}$
90. The units of rate of zero order reaction is:
(A) Sec^{-1}
(B) Mollit^{-1}
(C) $\mathrm{Mol} \mathrm{lit}^{-1} \mathrm{sec}^{-1}$
(D) $\mathrm{Mol} \mathrm{lit}^{-1} \mathrm{sec}$
91. The rate constant for first order reaction is $0.01 \mathrm{sec}^{-1}$. If the initial concentration of reactant A is 0.1 M , the initial rate is :
(A) 1×10^{-2}
(B) 1×10^{-3}
(C) 0.1
(D) 1.1×10^{-2}
92. The pH of $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}$ solation is :
(A) 2.70
(B) 5.20
(C) 1.00
(D) 2.05
93. The dissociation constant of weak acid HA is 1×10^{-3} and its concentration is 0.1 M . The pH of solution is
(A) 1
(B) 2
(C) 3
(D) 4
94. The units of molar conductance are :
(A) $\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
(B) $\mathrm{S}^{-1} \mathrm{~m}^{2} \mathrm{~m} \mathrm{M}^{-1}$
(C) $\mathrm{S} \mathrm{mol} \mathrm{m}^{2}$
(D) $\mathrm{S}^{-1} \mathrm{molM}$
95. Which of the following ions has highest ionic mobility ?
(A) OH
(B) Li^{+}
(C) Cs^{+}
(D) H^{+}
96. The cell in which electrical energy is converted to chemical energy is :
(A) Galvanic cell
(B) Voltaic cell
(C) Electrolytic cell
(D) Electrochemical cell
97. The standard reduction potentials of $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}$ are -0.76 v and +0.34 v respectively. The E^{o} of cell $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.1 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.1 \mathrm{M})\right| \mathrm{Cu}$ is :
(A) +0.42 v
(B) 1.10 v
(C) -1.10 v
(D) -0.42 v
98. Arrhenius theory of electrolytic conduction does not apply to:
(A) HCN
(B) $\mathrm{NH}_{4} \mathrm{OH}$
(C) $\mathrm{CH}_{3} \mathrm{COOH}$
(D) KCl
99. Under Isobaric conditions the heat absorbed by the system qp is given by :
(A) $\mathrm{qp}=\Delta \mathrm{H}$
(B) $\mathrm{qp}=\Delta \mathrm{E}$
(C) $\mathrm{qp}=\Delta \mathrm{E}+\Delta \mathrm{V}$
(D) $\mathrm{qp}=\Delta \mathrm{E}-\mathrm{P} \Delta \mathrm{V}$
100. C_{P} and C_{V} relation for He gas is :
(A) $\mathrm{C}_{\mathrm{p}}>\mathrm{C}_{\mathrm{V}}$
1
(B) $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{v}}$
(C) $\mathrm{C}_{\mathrm{P}}=\mathrm{C}_{\mathrm{v}}+\mathrm{R}$
(D) $\mathrm{C}_{\mathrm{p}}=\mathrm{C}_{\mathrm{v}}+2 \mathrm{R}$
101. In isothermal expansion of gases, which of the following is zero ?
(A) q (heat absorbed)
(B) W
(C) $\Delta \mathrm{E}$
(D) $\Delta \mathrm{V}$
102. Which of the following gases warmed up in adiabatic expansion?
(A) O_{2}
(B) N_{2}
(C) Ne
(D) H_{2}
103. The $\Delta \mathrm{E}$ and $\Delta \mathrm{H}$ relation for the reaction
$\mathrm{C}_{6} \mathrm{H}_{6}(\ell)+7 \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\ell)$ is :
(A) $\Delta \mathrm{H}=\Delta \mathrm{E}-1.5 \mathrm{RT}$
(B) $\Delta \mathrm{H}=\Delta \mathrm{E}+1.5 \mathrm{RT}$
(C) $\Delta \mathrm{H}=\Delta \mathrm{E}+1 / 2 \mathrm{RT}$
(D) $\Delta \mathrm{H}=\Delta \mathrm{E}$
104. Which of the following is true for spontaneous process?
(A) $\Delta \mathrm{G}=+\mathrm{ve}$
(B) $\Delta \mathrm{G}=-\mathrm{ve}$
(C) $\Delta \mathrm{G}=0$
(D) $\Delta \mathrm{G}=\Delta \mathrm{S}=\Delta \mathrm{H}=0$
105. The number of degrees of freedom at triple point in $\mathrm{H}_{2} \mathrm{O}$ system are :
(A) 1
(B) 0
(C) 2
(D) 3
106. The phase rule for condensed systems ($\mathrm{Ex}: \mathrm{Pb}-\mathrm{Ag}$ System) at constant P is :
(A) $\mathrm{F}=\mathrm{C}-\mathrm{P}+2$
(B) $\mathrm{F}=\mathrm{C}-\mathrm{P}+1$
(C) $\mathrm{F}=\mathrm{C}-\mathrm{P}+3$
(D) $\mathrm{F}=\mathrm{C}+\mathrm{P}-1$
107. Gels are :
(A) solids dispersed in solid
(B) solids dispersed in gas
(C) solids dispersed in liquid
(D) Liquids dispersed in solids
108. Highest flocculation value exhibited for $\mathrm{Fe}(\mathrm{OH})_{3}$ solution is :
(A) KCl
(C) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
(B)
(D)

109. Tyndall effect is shown by :
(A) Ideal solutions
(B) AgCl suspension
(C) Starch solution
(D) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution
110. A catalyst is :
(A) Consumed in reaction
(B) Produced in reaction
(C) Not affected in reaction
(D) Undergoes chemical change
111. In an auto catalytic reaction, the rate of reaction:
(A) Increase with time
(B) Not affected with time
(C) Decrease with time
(D) Can'tbe predicted
112. $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ in petrol acts as :
(A) Catalyst
(B) Promoter
(C) Activator
(D) Inhibitor
113. The distribution coefficient expression for distribution of Benzoic acid in Benzene and water is obtained experimentally as $K=\sqrt{\mathrm{C}_{\text {Benzene }}} / \mathrm{C}_{\text {Water }}$, the molecular state of Benzoic acid is :
(A) Dimerin Benzene
(B) Monomer in Benzene
(C) Dissociated in Benzene
(D) Dimer in Water
114. At equilibrium the free energy change $(\Delta \mathrm{G})$ is :
(A) 0
(B) -ve
(C) + ve
(D) infinity

EIJ-49853-A
115. According to Lechateliar principle the reaction in the $2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})+$ heat equilibrium the forward reaction is favoured when :
(A) High T and High P
(B) Low T and Low P
(C) Low T and High P
(D) HighTonly
116. Which of the following is not colligative property?
(A) Relative lowering of VP
(B) Elevation of BP
(C) Osmotic pressure
(D) Freezing point
117. Which of the following solution has largest osmotic pressure ?
(A) 0.1 M Glucose
(B) 0.11 M Urea
(C) $0.1 \mathrm{MBaCl}_{2}$
(D) 0.1 M KCl
118. Two isotonic solutions will have same :
(A) Vapour pressure
(B) Boiling point
(C) Freezing point
(D) Osmotic pressure
119. A non-volatile solid is added to water. Its freezing point wills
(A) Increase
(B) Decrease
(C) No change
(D) Can't be predicted
120. Sea water can be converted into fresh water by :
(A) Osmosis
(B) Sedimentation
(C) Diffusion
(D) Reverse Osmosis

ROUGH WORK

ROUGH WORK

