(Turn Over)

M.SC DEGREE I SEMESTER EXAMINATION IN ENVIRONMENTAL TECHNOLOGY DECEMBER 2004

ENV 2108 CHEMOMETRICS AND GOOD LABORATORY PRACTICES

Time: 3 Hours					Maxim	num Marks: 50	
			PART - Answer ANY FII Il questions carry	<u>/E</u> questi	•		
I.	1.	$(5 \times 2 = 10)$ Express to four significant figures in litres					
	••	(i)	12.00 ml.	(ii)	9.12 ml.		
	2.	Express to appropriate significant figures if the precision of					
		the measurement is $\pm 1.0 \times 10^{-7}$					
		(i)	0.0326480	(ii)	0.1462810		
	3.	Express to appropriate significant figures the following:-					
		(i)	$7.354 \times 10^3 - ($	219.5 – 6	0.21) (ii) 24.8	x 0.32 x 2818	
	4.	Give the number of significant figures					
		(i)	17.29×10 ⁵	(ii)	2839		
	5.	What	is meant by a wea	k acid? I	llustrate with a	ın example.	
	6.	What is a buffering system?					
			<u>PART</u> (Answer <u>ANY FI</u> All questions carry	<u>VE</u> quest		(5 x 3 = 15)	
						(5.1.5 15)	
II.	1.	A set of 6 results are obtained for Chromium in a steel sample 17.30%, 17.34%, 17.95%, 17.35%, 17.29%, 17.33%. Are there					
		any outliers in the set of results? If so, justify the rejection of					

the outlier.

2. Two chemists A and B determined Magnesium in a sample and got the following sets of results. Assuming that the sample homogeneity is ensured, which of the chemist inspires greater confidence. Justify your answer.

Chemis	st A	Chemist B		
Sample wt. (g)	%Mg	Sample wt.(g)	%Mg	
0.1735	17.52	0.2709	17.53	
0.1639	17.50	0.2862	17.58	
0.1877	17.54	0.2654	17.54	
0.1750	17.53	0.2902	17.55	
0.1605	17.49	0.2408	17.57	

- 3. 17.5 g of Na₂CO₃.10H₂O is dissolved in water and made up to 1 litre at 25°C. What is the molality and normality of the solution?
- 4. Calculate the buffer capacity of a solution containing 2.0 x 10⁻² M CH₃COOH and 2.0 x 10⁻² M CH₃COONa (K_a of acetic acid 1.75 x 10⁻⁵).
- 5. Define activity coefficient. Give one method for measurement of the activity coefficient.
- 6. Calculate the ionic strength of a solution, which is 0.25 M KCl, 0.02M MgCl, and 0.10 M Na₂SO₄.

PART-C

(Answer <u>ANY FIVE</u> questions)
(All questions carry <u>EQUAL</u> marks)

$$(5 \times 5 = 25)$$

- III. A 100 ml aliquot of acetic acid solution is titrated with 0.2 M NaOH.
 - Vol.(M1) 13.5 14.0 14.5 15.0 15.5 16.0 16.5 17.0 17.5 18.0 pH 5.37 5.41 5.60 5.82 6.13 8.50 10.91 11.20 11.35 11.47

Plot the titration curve, the first derivative curve. Determine the end point and the concentration of acetic acid solution.

Contd.....3

IV. Calculate the e.m.f. of a cell having a Platinum wire dipping in 100 ml of 0.01 M Fe (II) solution, on addition of 1.0 ml of 0.1 M Cerium (IV) sulfate.

$$Ce^{+++} + 1e \leftrightarrow Ce^{+++}$$
 $E_0 = 1.61 \text{V}$
 $Fe^{+++} + e \leftrightarrow Fe^{++}$ $E_n = 0.77 \text{V}$

- V. Barium sulphate has a solutility product of 1.1 x 10⁻¹⁰ at 25°C. Express the solubility in grams per litre.
- VI. Give a method for the separation of the constituents of an alloy containing equivalent amounts of Ca, Cu, Fe and Si.
- VII. Indicate why certain metallic species give flame tests, whereas others do not?
- VIII. How does one dispose off organic solvents?
