Name :								
Roll No								
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	tor's Signature :							
		CS/B.Tech/SEM-2/CH-201/2010 2010						
	ENGINE	ERING CHEMISTRY						
Time A	llotted: 3 Hours	Full Marks : 70						
	The figures in ti	he margin indicate full marks.						
Candi	dates are required t	to give their answers in their own words as far as practicable.						
		GROUP - A						
	(Multiple (Choice Type Questions)						
1. Ch	noose the correct al	ternatives for any ten of the following: $10 \times 1 = 10$						
(t	In the process of	f melting ice at -15°C						
	a) $\Delta G < 0$	b) $\Delta G = 0$						
	c) Δ <i>G</i> ≠ 0	d) $\Delta G > 0$.						
ii)	One mole of an i	deal gas expands isothermaly, until its						
	volume is doubled. What is the change in Gibbs energy							
	ΔG , for the proce							
	a) R ln 1/2	b) R 1n 2						
	c) RT ln 1/2	d) RT ln 2.						
201		[Turn over						

- iii) If the enthalpy of reactant is less than that of product then
 - a) the reaction is exothermic
 - b) heat is evolved
 - c) the reaction is endothermic
 - d) none of these.
- iv) The boiling point of p-nitrophenol is greater than o-nitrophenol because of
 - a) ionic bonding
 - b) intermolecular H-bonding
 - c) van der Waals attractive forces
 - d) intramolecular H-bonding.
- v) The ligand that can act as a flexidentate ligand is
 - a) OH-
 - b) Ethylene diamine
 - c) NO₂
 - d) SO_{A}^{2} -.

vi)	The	e electrons tr	apped in	ani	on vacancies in metal
	exc	ess defects ar	e known a	s	
	a)	valence elec	rons		
	b)	F-centres			
	c)	mobile electr	rons		
	d)	trapped elec	trons.		
vii)	Wh	ich of the follo	wing has t	he l	east bond angle?
	a)	NH ₃		b)	H ₂ O
	c)	CH ₄		d)	BeF ₂ .
viii)	The	e half-life peri	od of a rea	ctio	n is found to be directly
en de la companya de Ny indrindra di Companya de la comp	pro	portional to t	he intial	conc	entration. The order of
	rea	ction is		84 ^{1,2} 1.	
	a)	zero		b)	one
	c)	two		d)	three.
ix)	Αc	onducting poly	mer is		
	a)	Polyethylene		b)	Polypropylene
	c)	Polyaniline		d)	Bakelite.
x)	The	e highest ranki	ng coal is		
	a)	Anthracite		b)	Bituminous
	c)	Lignite		d)	Peat.
2201			3		[Turn over

		-		 		41		contains
-	- 3-	1100	20001	11000	112	THE CO	IOT CALL	CONTAINE
XII		1111	14134	 HSCU	111	THE SU	iai tau	CUHAMIS

a) Cs

b) Si

c) Sn

d) Ti.

xii) An essential condition for a molecule to be IR active is

- a) molecule be polar
- b) molecule has an oscillating dipole moment
- c) molecule has a permanent dipole
- d) none of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. a) Prove that for an adiabatic reversible process, $PV^{\gamma} = \text{constant}$.
 - b) Show that for an ideal gs $C_p C_v = R$, where the notations have their usual significance.
- 3. Explain octane number and cetane number with their significanes.
- 4. Write down the mathematical form of Lambert-Beer Law.

 State its significanes.

- 5. Write down the structure and use of Nylon-66 and PVC.
- 6. Show that Joule-Thompson effect is an enthalpic process.

 Explain the condition of heating and cooling.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

- 7. a) What do you understand by HTC & LTC of a coal?

 Write down the usefulness of each process.
 - b) What are the important products formed from the atmospheric distillation of crude oil?
 - c) What is the importance of "functional group region" in IR Spectroscopy? What are the different absorption peaks possible for methanol & ethanol?
 - d) What are the differences between p-type and n-type semiconductors? 5+4+4+2
- 8. a) Define condensation polymerization with suitable example.
 - b) Explain mathematically Weight Ayerage Molecular Weight.
 - c) What are raw rubber and vulcanized rubber?
 - d) Explain Mesomeric Effect with example. 5 + 3 + 4 + 3

- 9. a) What is anti-knocking compound? Discuss the function of TEL as anti-knocking agent. What is unleaded petrol? Write its significance.
 - b) Why does benzene undergo electrophilic substitution rather than addition reaction?
 - c) What is reference electrode? Explain the working principle of one reference electrode. 6+4+5

10. Explain why:

- a) Phenol is more easily nitrated than benzene.
- b) CdCl₂ will induce Schottky defect if added to AgCl crystal.
- c) NH₃, H₂O and CH₄ have sp³ hybridization but have different bond angles.
- d) Aqueous copper sulphate solution (blue colour) gives
 - i) a green precipitate with aqueous KF and
 - ii) bright green solution with aqueous KCI.

 $3 + 3 + 3 + (2 \times 3)$

- 11. Write short notes on any three of the following: 3×5
 - a) Hyperconjugation
 - b) Proximate analysis of coal
 - c) Gibbs-Duhem equation for a two component system
 - d) Optical isomerism and linkage isomerism in coordination compound.
 - e) Bathochromic shift and hypsochromic shift
 - f) Hydrogen bonding and its effect on properties of compounds.

2201