

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2006

MATHEMATICS

SEMESTER - 1

l ime	:	3	Hours]	
--------------	---	---	-------	---	--

[Full Marks: 70

GROUP - A

(Objective Questions)

1.	Answer	any	ten of	the	tollowing	:

 $10 \times 1 = 10$

- A. Choose the correct alternatives:
 - The sequence $\{(-1)^n\}$ is
 - a) convergent
- b) oscillatory
- c) divergent
- d) none of these.
- ii) If $\vec{\alpha} = 3i 2j + k$, $\vec{\beta} = 2\vec{i} \vec{k}$, then $(\vec{\alpha} \times \vec{\beta})$. $\vec{\alpha}$ is equal to
 - a) i+j+k
- b) i+1

c) 0

- d) 2.
- iii) If $f(x) = \frac{\sin x}{x} (x \neq 0)$, then $\lim_{x \to 0} f(x)$ is equal to
 - a) 0

b)

c) $\frac{1}{2}$

- d) 1.
- iv) The series $\sum_{n} \frac{1}{n}$ is convergent if
 - a) $p \ge 1$
- b) p > 1
- c) p < 1

d) $p \le 1$.

- B. Fill in the blanks:
- C. Answer the question very briefly:
 - vii) Give an example of a sequence which is bounded but not convergent.
- D. Choose the correct alternatives:
 - viii) The moment of inertia of a thin uniform rod of mass M and length 2a about an axis perpendicular to the rod at its centre is
 - a) $\frac{Ma^2}{3}$

b) $\frac{Ma^2}{2}$

c) Ma²

d) $\frac{Ma^2}{4}$

CS/B.Tech/SEM-1/M-101/06

4

ix) If
$$\phi = 3x^2y - y^3z^2$$
, then Grad ϕ at $(1, -2, -1)$ is

- -16i + 12j 9k b) -9i 12j + 16k
- c)
- -12i-9j-16k d) 12i+16j-9k.
- E. Fill in the blank:
 - Degree of homogeneity of $ax^2 + 2hxy + by^2$ is equal to
- Answer the following questions very briefly:

xi) Evaluate
$$\int_{0}^{\pi/2} \frac{\cos x}{\sin x + \cos x} dx.$$

A, B, C and D are points of $(\alpha, 3, -1)$, (3, 5, -3), (1, 2, 3) and (3, 5, 7) respectively. If AB is perpendicular to CD then find the value of a.

Group - B

(Short Answer Questions)

Answer any three questions.

 $3 \times 5 = 15$

2. If a, b, c are three vectors, show that

 $[a \times b, b \times c, c \times a] = [a, b, c]^2$. Symbols have their usual meanings.

- Find the length of the perimeter of Asteroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$. 3.
- State Rolle's theorem and examine if you can apply the same for $f(x) = \tan x$ in $[0, \pi]$. 4.
- Show that $f(x, y) = \frac{2xy}{x^2 + y^2}$ for $(x, y) \neq (0, 0)$ 5. for (x, y) = (0, 0).

is not continuous at (0,0).

- If $y = (x^2 1)^n$, show that $(x^2 1) y_{n+2} + 2 xy_{n+1} n(n+1) y_n = 0$.
- Find the extrema of $f(x, y) = x^3 + y^3 63(x + y) + 12xy$.

Group - C (Long Answer Questions)

Answer any three questions.

 $3 \times 15 = 45$

- Examine continuity and differentiability of f(x) at x = 0, when $f(x) = x \sin \frac{1}{x}$; 8. a) $(x \neq 0)$ and f(0) = 0.
 - If $u = \tan^{-1} \frac{x^2 + y^2}{x u}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial u} = \sin 2u$. b)
 - Test for convergence of $\sum_{n=1}^{\infty} \frac{n^2 1}{n^2 + 1} x^n; x > 0.$ $3 \times 5 = 15$ c)

- 9. a) Expand $\log_e (1 + x)$ in ascending power of x stating the condition of convergence.
 - b) Evaluate $\iint \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dx dy$ over the positive quadrant of the circle $x^2+y^2=1$.
 - c) State Leibnitz theorem and apply it to examine the covergence of

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$

 $3 \times 5 = 15$

- 10. a) Obtain the length of loop $5y^2 = (x-1)(x-2)^2$.
 - b) Using divergence theorem evaluate $\iint_{S} \overrightarrow{u} \cdot \overrightarrow{n} ds$

where $\overrightarrow{u} = xi + yj + zk$ and S is the sphere $x^2 + y^2 + z^2 = 9$ and \overrightarrow{n} is outward normal to S.

c) A variable plane is at a constant distance p from origin and meets co-ordinate axes in A, B and C. The planes are drawn through A, B and C and parallel to co-ordinate axes. Show that locus of their point of intersection shall be

$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}.$$

 $3 \times 5 = 15$

- 11. a) If $u = \frac{x+y}{1-xy}$ and $v = \tan^{-1}x + \tan^{-1}y$, find $\frac{\partial (u,v)}{\partial (x,y)}$.
 - b) If vector functions \overrightarrow{F} and \overrightarrow{G} are irrotational, show that $\overrightarrow{F} \times \overrightarrow{G}$ is solenoidal.
 - c) Verify Stoke's theorem for $\vec{F} = (2x y) i yz^2j y^2zk$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. $3 \times 5 = 15$
- 12. a) Obtain a reduction formula for $\int_{0}^{\pi/2} \sin^{n} x \, dx$ and evaluate $\int_{0}^{\pi/2} \sin^{5} x \, dx$.
 - b) If z = f(x, y) where $x = e^{u} \cos v$, $y = e^{u} \sin v$, show that $y \frac{\partial z}{\partial u} + x \frac{\partial z}{\partial v} = e^{2u} \frac{\partial z}{\partial v}.$
 - c) Obtain the equation of the plane through straight line 3x 4y + 5z 10 = 0,

$$2x + 2y - 3z - 4 = 0$$
 and parallel to the line $x = 2y = 3z$.

 $3 \times 5 = 15$