N.B. (1) Question No. 1 is compulsory.
(2) Attempt any four questions out of the remaining six questions.
(3) Figures to the right indicate full marks.

1. (a) The matrix A is given by $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2\end{array}\right]$ Find the eige
$B=A^{2}+2 A+1-6 A^{-1}$
(b) Evaluate $\int_{C} \frac{d z}{\sinh z}$ where C is $x^{2}+2 y^{2}=16$ and efl simple pole.
(c) Find the work done in moving a particle round the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ in the plane $Z=0$ in the force field giver

$$
\bar{F}=(3 x-2 y) i+(2 x+3 y) j+y^{2} k
$$

(d) Prove that $4 J_{n}^{\prime \prime}(x)=J_{n-2}(x)-2(x)+J_{n+2}(x)$
2. (a) Prove that $J_{1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \sin \left(\right.$ Hence prove that $J_{-1 / 2}(x)=\sqrt{\frac{2}{\pi x}} \cos (x)$
(b) Show that the map of real axil Z-plane is a circle under the transformation $w=\frac{2}{z+i}$. Draw the
(c) If $A=\left[\begin{array}{cc}3 / 2 & 1 / 2 \\ 1 / 2 & 3 /\end{array}\right]$ determine A^{10} and 4^{A}.
3. (a) Find then values and eigen vectors of a matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 1 \\ 3 & 2 & 3\end{array}\right]$
(b) Evaluate the line integral $\int_{C}\left(3 x^{2} y d x+2 y^{3} x d y\right)$ where C is the circle $x^{2}+y^{2}=1$, counter clockwise from $(1,0)$ to $(-1,0)$.
(c) If $\bar{F}=\left(2 y^{2}+3 z^{2}-x^{2}\right) i+\left(2 z^{2}+3 x^{2}-y^{2}\right) j+\left(2 x^{2}+3 y^{2}-z^{2}\right) K$ and S is the surface enclosed by $x^{2}+y^{2}-2 a x+a z=0$ and $z \geq 0$, using Stoke's theorem evaluate $\iint_{S}(\nabla \times \bar{F}) \cdot d \bar{s}$
4. (a) Find the bilinear transformation which maps the points $z=\infty, i, 0$ onto the point $0, i, \infty$. Also find fixed points.
(b) Evaluate $\int_{C} \frac{e^{2 z} \cdot d z}{(z+1)^{4}}$ where C is the (i) circle $|z-1|=3$ (ii) circle $|z|=0.5$
(c) Find the rank and signature of the real quadratic form -

$$
2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}-8 x_{2} x_{3}=4 x_{1} x_{3}-12 x_{1} x_{2}
$$ $2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}-8 x_{2} x_{3}=4 x_{1} x_{3}-12 x_{1} x_{2}$

and reduce it to normal form through congruent transformatio
5. (a) Using Green's theorem evaluate $I=\oint_{C}\left[\left(x y+y^{2}\right) d x+x^{2} d y\right.$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
(b) If $f(z)=u+i v$ is analytic and $u+v=\frac{6 \sin }{e^{2 y}+e^{-2 y}-s(2 x)}$. Find $f(z)$
(c) Obtain Laurent's series for $f(z)=\frac{z^{2}-1}{z^{2}+5 z+0}$ round $z=1$
6. (a) Prove that $\frac{d}{d x}\left[x J_{n} J_{n+1}\right]=x\left[J_{n}^{2}+1\right]$
(b) Show that the matrix $A=\left[\begin{array}{cc}a & a\end{array}\right]$ satisfies Cayley-Hamilton Theorem where a, b, c are positiveseal nos.
(c) Evaluate $\int_{0}^{2 \pi} \frac{\sin ^{2 \theta}}{5-4 \cos \theta}$
7. (a) If $f(z)=\frac{x^{3}(1+)^{3}(1-i)}{2}+y^{2}$ when $z \neq 0$

when $z=0$

then that (i) $C-R$ equations are satisfied at origin But
(ii) $f^{\prime}(0)$ does not exist.
(b) $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ find A^{50}
(c) If $\bar{F}=2 x^{2} y i-y^{2} j+4 x z^{2} k$ and S is the closed surface in the first octant bounded by the cylinder $y^{2}+z^{2}=9$ and $x=2$ then using Gauss divergence theorem evaluate $\iint_{S} \bar{N} \cdot \overline{\mathrm{~F}} \mathrm{ds}$.

